
.. 

CS 116 
A. I. 72 

CO 
CO 
o o 
00 

Q 

THE KINEMATICS OF MANIPULATORS 

UNDER COMPUTER CONTROL 

BY 

DONALD LEE PIEPER 

SPONSORED BY 

ADVANCED RESEARCH PROJECTS AGENCY 
ARPA ORDER NO. 457 

OCTOBER 24, 1968 

■   da   ■ '     -.oved 
ile; its 

distribn' on ir- uuLmiUid 
icr pü:c reit U 

COMPUTER    SCIENCE    DEPARTMENT 

School of Humanities and Sciences 

STANFORD UNIVERSITY 

" 

^ JWN? 

Reproduced by the 
CLEARINGHOUSE 

lor Federal Scientific & Technical 
Information Springfield Va   22151 1° 



:i 

D 
ß 
:1 
D 

: 

:: 

: 

; 

a 
D 
Q 

0 
11 

STANFORD ARTIFICIAL INTELLIGENCE REPORT October 24,   1968 
MEMO NO.  AI-72 

THE  KINEMATICS   OF  MANIPUIATCRS  UNDER COMPUTER CONTROL 

by Donald L.  Pieper 

ABSTRACT:     The kinematics  of manipulators  is  studied.    A model is 
presented which allows  for the systematic description 
of new and existing manipulators. 

Six degree-of-freedorn manipule   ors are studied.    Several 
solutions  to the  problem of finding the manipulator 
configuration  leading to a specified position and orien- 
tation are  presented.    Numerical as well as explicit 
solutions are given.    The problem of  positioning a multi- 
link digital arm is also discussed. 

Given the solution to the position problem,  a set of 
heuristics  is  developed for moving a six degree-of- 
freedom manipulator from an initial position to a 
final position through a space containing  obstacles. 
This results  in a computer program shown to be able 
to direct a manipulator around obstacles. 

The research reported here was  supported in part by the Advanced Research 
Projects Agency of the  Office  of the Secretary of  Defense  (SD"183). 
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THE   KINEMATICS   OF  MANIPUIATCRS   UNDER COMPUTER CONTROL 

ABSTRACT 

This  dissertation Is concerned with the  kinematic analysis  of 

computer controlled manipulators.    Existing Industrial and experimental 

manipulators are cataloged according to a new model which allows  for the 

systematic  description of both existing and new manipulators. 

This work deals mainly with manipulators consisting of six degree- 

of-freedom open chains  of articulated  links with either turning  (revolute) 

or sliding  (prismatic)  Joints.    The  last  link called the  "hand" is the 

free end of the manipulator and has additional motion capabilities which 

I make  it possible  to grasp objects. 

The  following problem is  discussed:     given the  desired hand  position 

and orientation along with the various  link parameters defining the 

structure, what are the values of the manipulator variables  that place 

the hand at  the  desired position with  the desired orientation?    Solutions 

to this  problem are  presented for any six degree-of-freedom manipulator 

with three revolute Joints whose axes  intersect at a  point,   provided the 

remaining three  joints are revolute  or  prismatic pairs.    These results 

can be expressed as a  fourth degree  polynomial in -«ne unknown,  and closed 

form expressions  for the remaining unknowns. 

It is shown that this  is equivalent to the kinematic analysis  of all 

single   loop five-bar mechanisms with  one sph« rical Joint and four  Joints 

which are revolute  or prismatic  pairs.     The extension to the case where 

only one  pair  of axes  Intersect  is  discussed.    A similar solution for 
I 

any manipulator with three  prismatic  Joints is also given. 
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A numerical procedure based on velocity methods Is developed to 

analyze manipulators which cannot be "solved" explicitly.    This  pro- 

cedure  Is  found to be superior to the widely used Newton-Raphson 

technique. 

The problem of positioning a  "digital arm"  (I.e.,  a multl-Unk 

manipulator where each  Joint  Is  only capable  of several digital steps) 

Is  discussed.    A simple searching algorithm using a  look-ahead scheme 

Is  developed.    A two-dimensional model and three-dimensional model are 

studied. 

Given the solution to the  position problem,  a  set  of heuristics  Is 

developed for moving a six degree-of-free dorn manipulator from an Initial 

position to a final position through a space containing obstacles.    A 

mathematical model of objects  Is developed so that  possible conflict 

between objects and any  link of the manipulator can be  detected and 

avoided. 

Some considerations  In choosing a manipulator  for use with a 

computer are discussed.    A set  of computer programs  -  In FCRTRAN IV - 

are developed to perform the  position analysis and trajectory generations 

for any six degree-of-freedom .nanipulator with turning Joints. 
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CHAPIER I 

INTRODUCTION 

Remote manipulation involves having a machine perform tasks 

requiring human dexterity.  Originally, the purpose of a manipulator 

was to protect man from the hazards of performing the work himself. 

With the advance of technology, the variety of tasks performed in hostile 

environments has increased.  In addition the scope of the tasks performed 

by machines has broadened, so that it is desirable for machines to extend 

the capabilities of men and to replace men at tedious as well as dangerous 

Jobs. Although, today, many processes and machines are automatically 

controlled, the problems of remote manipulation have yet to be fully 

solved. 

One approach to this problem is to use a digital computer to control 

a manipulator.  Then with information obtained from visual as well as 

other sensory feedback, the computer would hopefully be able to direct 

the manipulator to perform tasks requiring some intelligence as well as 

dexterity. 

This dissertation is concerned with the kinematic problems that 

arise when a manipulator is subjected to computer control.  These include 

the problems of position analysis and trajectory generation. 

In Chapter II, we discuss the classification and the description of 

manipulators, including a catalog of most of the existing commercial and 

special purpose manipulators. 

•1- 



Since much of the research related to the position problem has occurred 

outside these fields, we discuss that work in Chapter III.  In the last 

section of this chapter, the contribution of this dissertation to current 

research is presented. 

1.1 History of Remote Manipulation 

The development of remote manipulators followed closely the 

development of atomic energy. As the radiation level of atomic energy 

increased, so did the hazard to the operator.  Thus, shielded environ- 

ments and equipment to handle the material were needed.  Early 

-2- 

: 

r. 

1 

The position problem is discussed in Chapter III. There we present 

methods to find values for the manipulator variables that will place the 

terminal device at a given position. 

In Chapter IV, we present numerical methods that may be used to 

analyze manipulators too complex for analytic solution as described in 

Chapter III. 

The problems of positioning a digital manipulator are discussed in 

Chapter V. 

Trajectory generation - the problem of moving a manipulator from a 

given initial position to a specified final position - is studied in 

Chapter VI. 

In Chapter VII we briefly discuss some considerations in choosing 

a manipulator for control by computer. 

Chapter VIII presents the conclusions and some suggestions for 

future work. 

In the next section we present a brief history of remote manipulation. 

This is followed by a summary of related work on intelligent automata. 
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experiments were carried ouc using tongs in shielded caves.  For more 

complex experiments it was deemed necessary to develop remote controlled 

manipulators.  It was felt that general purpose manipulators could be 

used to replace much special purpose equipment.  Thus in 1947, the 

Argonne National Laboratory began research into remote manipulators and 

related equipment.  The first manipulators built at Argonne had six 

degrees-of-freedom controlled by mechanical drives plus a hydraulically 

operated grip.  Later versions were driven by electric motors.  They 

worked well for simple tasJcs.  However, there was no force feedback, 

making it difficult to perform experiments where articles came into 

contact with one another [1]. 

In 1948 the people at Argonne decided to develop manipulators 

having force feedback with motion capability analogous to that of the 

human hand.  This led to master-slave manipulators in which the motion 

of the master was mechanically coupled to the slave so that the forces 

in the slave would be approximately reflected in the master.  Several 

versions of these were built at Argonne.  One of these, the Model 8, has 

been produced by several companies and is commercially available [1, 2, 

3, 4]. 

Although these mechanically coupled manipulators perform quite well, 

they have several drawbacks.  The main disadvantage is the mechanical 

connection which requires the master and slave to be physically close 

together.  This also means that the shielding enclosure must ba designed 

'Numbers in brackets designate references in the Bibliography (P.   ) 
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for the linkage.  In addition the strength of the slave is limited by the 

strength of the operator's hand.  These disadvantages are offset in part 

by the fact that the manipulators are fairly inexpensive and are able to 

perform intricate operations p., 2, 3,4, 5 J. 

Externally powered master-slave manipulators using force reflecting 

servos have been developed by both Argonne and the General Electric 

Company.  The Argonne machine is controlled with electromechanical servos 

while General Electric's ("Handyman") is hydro-mechanically controlled. 

These manipulators have proved as effective as the mechanically connected 

master-slaves.  They have the advantage that the only connection between 

master and slave is an electrical cable.  In addition, they have a 

variable force feedback ratio.  However, their use is not as widespread 

as the mechanical type.  Perhaps this is due to their high cost and the 

complexity of the force reflecting servo system [1, 6 J 

Powered manipulators, not of the master-slave type have also been 

successfully developed by General Mills, Inc., Programmed and Remote 

Systems Corporation, AMF, General Electric, Westinghouse Electric Company, 

FMC, among others.  They are often used in radiation experiments along 

with the more precise master-slaves.  They are also used in an under- 

water environment on submarines [7, 8] .  Electric and hydraulic-powered 

prosthetic arms have also been developed ß, 10] . All these are generally 

controlled by joy sticks, toggle switches, or similar devices. 

All of the above mentioned manipulators require the presence of a 

human operator.  In their design much effort is made to have an inte- 

grated man-machine system. This is reflected in the research of 

Mosher [b, 11] , Goertz [12] , and Bradley [13] whose emphasis is directed 

-4- 
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towards developing systems In which the operator does not feel his 

remoteness but Is made to feel as If he wer'; performing the task him- 

self.  This is accomplished with force reflecting servo-systems giving 

kinesthetic feedback similar to what a human would feel.  Such work will 

have application in materials-handling, underwater work, and perhaps 

earth-moving equipment.  It also may be applicable to problems of remote 

master-slave manipulators with time delay.  Farrell [14] has indicated 

the feasibility of such schemes. 

There are some problems that the master-slave system doe^i not 

adequately solve.  Since the master-slave system by definition requires 

a master, it does not remove the tedium that is basic to most manipulative 

tasks.  In addition, for exploration of space, the time delay will become 

excessive for anything further distant than the moon.  Thus we have 

motivation to develop manipulator systems with intelligence. 

; 

n 
i 

D 

:; 

D 

1.2  Intelligent Automata 

Computer-manipulator systems such as AMF's Versatran and Unimatlon, 

Inc.'s Unimate [16] are presently in use in industrial materials-handling 

situations.  These machines are programmed to move through a pre-determlned 

series of positions.  They are used on assembly lines to unload punch 

presses, conveyor belts and similar fixed cycle type operations.  Working 

three shifts a day, they can economically compete with human operators [15] 

However, they do not have any decision making ability, so that, if the 

parts are not in the right position or if the cycle time varies, these 

machines will not operate successfully.  In addition they must be re- 

programmed for slight changes in the process.  It is thus desirable for 

such systems to incorporate decision making capabilities. 

-5- 
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tasks.  He shows that tasks, such as pushing blocks on a table, or 
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Ernst [IS] , using a manipulator equipped with sensory feedback, 

developed a hand-computer system capable of stacking blocks.  His system 

was able to learn about its environment with information gained from 

touch sensors.  The work at MIT's Project MAC [1SJ] has recently extended 

the work of Ernst to include visual inputs and to develop a hand-eye 

system capable of manipulating objects.  The aim of Project MAC is to 

develop an autonomous system with vision capable of performing manipulative 

tasks requiring increasing levels of decision making ability. 

Rosen, Nilsson, Raphael, [20, 21, 22] , and others at Stanford 

Research Institute have developed a mobile vehicle under computer control 

that performs tasks in a real environment.  The primary goal is to develop 

a system receiving visual and other sensory information from the vehicle, 

and then use this information to direct the vehicle towards the completion 

of tasks requiring the abilities to plan ahead and learn from previous 

experience. 

Other research in manipulator-computer systems has been in using 

small digital computers to assist rather than replace operators in manipu- 

lative tasks.  Beckett [23] at Case Institute, has developed such a system 

in which a typical use of the computer is to find  minimum transit time 

paths and direct the manipulator around predefined obstacles.  In obstacle 

avoidance his routines keep the hand outside of effective boundaries 

placed around obstacles. 

The Supervisory Controlled Manipulator, is again a system with 

limited intelligence intended to assist rather than replace an operator. 

For this system Whitney [24] developed a state-space model of manipulative 
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deciding how many and in what order blocks should be moved or pushed 

aside in order to position a new block, may be expressed in terms of 

discrete state spaces. A state is defined to be the configuration of 

the task site. 

The Hand-Eye Project, of the Stanford Artificial Intelligence 

Project p^ , Is oriented toward solution of computer supervised hand- 

eye problems of increasing complexity.  Current work is on basic problems 

involving manipulation of simple objects and analysis of visual data. 

Eventually it is hoped that the system will be developed to the point 

of being able to assemble machines. 

1.3 Contributions of this Dissertation 

In Chapter II the description of manipulators is put on a systematic 

basis. We present conditions leading to degeneracy in six degree-of- 

freedom manipulator and conditions in which combinations of one degree- 

of-freedom joints are kinematically equivalent to more complex joints. 

Finally, a catalog of existing manipulators is presented. 

The main analytical work is presented in Chapter III.  Here solutions 

to the position problem are discussed.  Methods are given to solve any 

six degree-of-freedom manipulator containing three revolute joints, 

whose axes intersect at a point, provided the remaining three joints 

are revolutes or sliders.  The extension of the method to more difficult 

arrangements is dealt with in the case where only one pair of revolute 

axes intersect. A method of solution for a six degree-of-freedom 

manip'lator with three prismatic joints is also presented. 

In Chapter IV a numerical procedure based on velocity methods is 

developed to analyze manipulators whose solutions cannot be expressed 

-7- 



as in Chapter III.  This procedure, along with the more conventional 

Newton-Raphson method are programmed for a digital computer and the 

results compared. 

In Chapter V methods are developed to place the end of a new type of 

digital manipulator at a specified position.  A simple searching 

algorithm is made more powerful by the addition of look-ahead.  The three 

dimensional problem is attacked with insight gained from studying a 

planar model. 

The trajectory generation problem is discussed in Chapter VI. A 

set of heuristics is given for moving the manipulator from an initial 

position to a final position through a space containing obstacles. 

Possible conflict between all links of the manipulator and nearby 

obstacles is detected, and hopefully avoided. 

In Chapter VII some considerations in choosing a manipulator for use 

with a digital computer are discussed. The desirability of being able to 

arbitrarily locate the hand throughout the workspace brings up the problem 

of zones.  Some insight into this problem is presented. 

Much of the above has been programmed and tested on a digital 

computer.  In particular the numerical solutions and the heuristics for 

trajectory generation have been programmed to result in a fairly general 

kinematic package.  With only small modification these routines could 

be used with any six degree-of-freedom iranipulator. 
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CHAPTER II 

CLASSIFICATION OF MANIPULATORS 

2.1 The Basic Model 

In order to analyze and compare manipulator configurations, it is 

desirable to develop a mathematical model that can be used to describe 

all manipulators. A manipulator is considered to be a group ot rigid 

bodies or links.  These links are connected and powered in such a way 

that they are forced to move relative to one another in order to posi- 

tion a hand or other type of terminal device.  The first link is assumed 

connected to ground by the first joint while the last link is free and 

contains the hand.  In addition, each link is connected to at most two 

others so that closed loops are not formed.  For the purpose of this 

work, the assumption is made that the connection between links (the 

joints) have only one degree-of-freedom. With this restriction, two 

types of joints are practical — revolute and prismatic* A revolute 

joint only permits rotation about an axis, while the prismatic joint 

allows sliding along an axis with no rotation. A schematic representa- 

tion of these joints is shown in Fig. 2.1.  If a manipulator is considered 

to be a combination of links and joints, with the first link connected 

to ground and the last link containing the terminal device, it may 

be classified by the type of joints and their order.  For example, a 

manipulator comprised of three revolute joints, a prismatic joint. 

♦Although others might wish to include screw joints, we feel thrt the 
difficulties encountered in building screw joints make them impractical. 
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and  two revolute  joints,   in that order,  would be  designated 3R-P-2R, 

where R is used tor a revolute and  P for a prismatic  joint. 

Given a broad classification according  to  the   joints,  a sub-grouping 

is made by  looking at  the   links.     Now,  each  joint has an axis associated 

with  it,  and two adjacent  axes are connected by a   link.     Thus a  link 

description iz  just  the  description of the relation between two adjacent 

axes.    A  link model,   shown  in Fig.  2.2,  has  the  following parameters: 

a.,:     The common normal  between the axis of  the  i— joint and  the 

axis of  the   (i+1)— joint, 

s^:     The distance  between the  lines    a       and    a^.i measured along 

the positive  direction of the axis  of   the  iiil joint. 

8   :    The rotation of  the  line    a^^    relative  to the  line    a^.i about 

the axis of  the  iÜI joint. 

a   :     The angle between  the   (1+1)111 axis and  the  i^h axis.    The 

positive  sense   is determined according  to  the right-hand 

screw rule with  the  screw taken along a^  pointing from the 

(i+1)— to the i^- axis. 

If  the  joint    i    is a  revolute,   then    a^,   s^    and   a^    are constants 

while    Qi    is  the variable associated with  that  joint.     If  joint    i    is 

a  prismatic  joint,   then    a., ai    and    9^^    are  constants while    8^^    is 

the variable.     The  sub-classification is  then made according to the 

non-zero    a.    and    s.   .     For example,   if all  the    a^    and    s^    of a 

4R manipulator were non-zero,   it would have  the  sub-classification 

slals2a2s3a3s4a4 or  if    ai  = s2  = s3 = 0    it would be  of  the  tyPe 

8^2^23^^.     It may be noted  that  for  the  last   link,     i = n,  an/in    and 

s       are not well  defined as axis    n+1    is non-existent.     For this reason, 

-10- 
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if the last joint is a revolute, the parameters of the last link will 

not be 4ncluded in the description. If, however, the last joint is a 

prismatic then sn will be included. For the first link s^ has an 

arbitrary reference that will be considered zero so that s, will be 

included only if the joint is prismatic. An example of a 4R, S2a2S3 

is shown in Fig. 2.3. 

2.2  Special Cases:  Degeneracy and Kinematic Eqv' alence n 
i* The most general manipulator has all non-zero link parameters. 

However, in practical manipulators there are many zero parameters which 

lead to special cases of interest. The first is degeneracy. This 

exists when the number of degrees-of-freedom of the last link is less 

than the number of joints.  A manipulator with more than six joints 

would be classified in this category, as a rigid body can have a maximum 

of six degrees-of-freedom.  The existence of four or more prismatic 

joints leads to degeneracy, since motion from one joint can in general 

be obtained as a linear combination of the motion of the remaining 

three.  Also, if four or more revolute axes always intersect at a 

point, then rotation about one axis can be expressed as a combination 

of rotations about the other three.  Special values of the parameter; a 

can also lead to degeneracy.  An example is given by those values of a 

for which four revolute axes are always parallel, and hence normal to 

the same plane. 

In addition to degeneracy, non-zero parameters may make combina- 

tions of revolute and prismatic joints kinematicallv.equivalent to 

more complex joints.  Thus if three revolute axes intersect at a point 

-11- 
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Figure 2.1. Schematic Representation of Joints, 
(a) Revolute     (b) Prismatic 

QX(6 l axis L + i 

Figure 2.2. The Link Model 

Figu/e 2.3. Schematic of a 4P, 823283 manipulator 
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they are equivalent to a spherical joint which we denote by the symbol 

S.  Also, if the axes of a revolute and a prismatic joint coincide, they 

are equivalent to a cylindrical joint denoted by the symbol C. 

A 4R manipulator may be used to illustrate these special cases. 

The most general case is shown schematically in Fig. 2.4a. A sufficient 

condition for two axes to intersect is that their common normal be 

zero. For example if a?    is zero, then axes 2 and 3 intersect 

(Fig. 2.4b).  For three axes to intersect at a point, the two common 

normals, as well as the displacement along the intermediate axis must 

be zero.  For example, if a2 = a-j =83 = 0, the result is equivalent 

to a spherical joint and the 4R manipulator is kinematically equivalent 

to an S-R manipulator (Fig. 2.4c). For four axes to intersect at a 

point (resulting in degeneracy), three adjacent conmon normals, and the 

displacements along the two intermediate axes must be zero (Fig. 2.4d). 

Degeneracy also occurs if the equivalent of two spherical joints exist. 

In this case, it is possible for the link connecting the two sphere 

centers to rotate about itself. 

A cylindric joint results when the common normal and the angle 

between a revolute and adjacent prismatic joint are both zero. An 

example of an R-P-R being equivalent to an R-C manipulator is shown 

in Fig. 2.5. 

2.3 A Catalog of Manipulator*: 

With the above scheme we may classify most of the manipulators that 

have been built in the last several years.  Some manipulators since 

they contain a very large number of links are omitted from the table. 

-13- 
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Figure 2.4. (a) 
(b) 
(c) 
(d) 

A general  4R,a1s^c! 
A 

manipulator, 
4R,a s s  wich one pair of intersectirg axes. 

A 4R,a1s,  manipulator and spherical equivalent. 
A degenerate 4R manipulator. 
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ii Figure 2.5.  (a)  An R-P-R manipulator    (b) The equivalent R-C 
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These generally have a snake-like structure, and even though these 

manipulators may fit into the basic model they contain many joints 

usually with limited freedom in each joint and similar link parameters 

for all links.  We call such manipulators "ORMS"* and consider them 

separately in Chapter 5. 

Table 2.1 contains a catalog of some recently built manipulators. 

r 
n 
n 
n 

i 

*ORM is the Norwegian word for snake. 

16- L 
1. 



1/1 
0) 
U 
B 
OJ 

a< 

■   ■ i—i i—i 

in 

-t 

en 

cr 
•* 

to I 
m n t/- 

to  to 
m p-i » 

to   tn oc 
ro (N n 

in   to • 
D- 

-    ■ 1 
«   DC H 
vD   vO N 

rn 
(»1 ■ 

V, r-j 
tN 10 ■ * ^ c^ 

oc rj 

a. d. 
oi 1 

i a: 
zc N 

in 

f •» a 
tn n ■ • 

(-1 rj <»> CI 
ra ■ re ■ 
^j p4 CI 

% to a 
PL< » 

St a^ Oi u 
m m in t~~ 

■■> 

n 
en 

o 
e 
0) 
h 

> 
re 
in   t>c 
I    c 

0> <-< 

oi  c 
to  to 
6 s: 

o I 
0) 
1-1 

a; 
> 
re 

m 00 
I C 
l-i iH 
OJ 

-o 
c 

2 

o oc 
XI c 

s ^ ac — 
•o 

-- c 
to to 

u 
U 4) 
tO 4J 
3 O 

•a E 
C 4) 

■ >- 

O 00 
J5 c 
O -J 
a: — 

•a 
— c 
to to 

h 
iJ 0) 

= o 
T) E 
C (U 

■ • 1- 

i at 
C 

Qt.    (-4 

to   10 

u 
u   v 
<n  u 
3 O 

•O E 
C 01 
I- u 

c 

c 
10 
X 10 

01 
oi en 
u u 
O 0) 
E T) 
Ä c 

OC 3 

c 

c 
10 
X 10 

0) 
oi <n 
u u 
O 01 
E -O 
Ä c 

OC 3 

0£ «1 
C 01 

F- V- 
•O H 
C ^- 
10 
X «0 

01 
oi in 
4J U 
O 0J 
E -o , 
«J c 
■ 3 

re 
<D 
in 

-o 
c 

M 
B 

re 
u". 
h 
0) 

B 

3  TJ 
O   C O    C 
E   to Ere 

j: X 
a, ai 

—   c •-<   0J 

•^ o 
x E 
V OI 
> 1- 

■ 
c 

01 

0C 
IM 
r 

h >J  >H u •  X 
U C   ai 
0) 

CJ X 
UJ 3 

- in 
0)   M re C   -H 

h c r 
01 0 
c 00 u. u. 
01 U  T w 
U < < < 

o 
B 

c r < a. 

■J 

1 

1A 
E 
0/ 
IJ »—' ■ »— 

SP > r u M C 

■ 
II 

—I 

h 
*J        in 
0) u 
3 -w 

C 01 W 
M C 0) 

O X 
bu 00 

3 3 
< < ? 

-" O 
to 00 
U 11 

•H 1-1 
n o 

X c 
a. to 

en 
0) 
c • 

■- • 

i- x 
10 to r J 

9 K 
•H 
B 
2 

> 

re 
E 

C 
re 
E 

■H 
X 

c 
c 
in 
m 

0) 
-o 
0 

0 
-a 
O 
r 

H h — o 
«J c 

il re '-i 
u u M re 
T; 01 9 —< 
01 > C^ 3 

•-i re iH a. 

c 1 re C B 
in R re < ^^ C B E 

0 C w h »-^ 1- s~* ^ 0 
CI ■v •a 9 >, 3   >^ in 

-a 01 <u r~ 3C '-' C 
0 tn 0» c B K   C 01 
r ** r C r o h 

I     - 

•17- 



c 
o 
u 

H 
►J 
CC 
< 
H 

m 

u 
c 
0) 

4) 
>4-l 

a 

1—i 
00 

K                                                                          1 1 

r—•           o                                    a> 
o\            ^                                    en 

1 1                         1 1                                                                                    L_J 

tn 
en 
CO 

i—i 
U 

m 
CO 
m               a>                en 

CO                           0)                            CO 
m            »j-               CM                 en 

CO                    CO                           CO                            GO 
c>4              en                  ^                    CM 

CO                 CO                       CO                        CO 

oi            et                oZ                BT 
-3-            »o                vo                 m 

■ 
CO 

P
r
o
s
t
h
e
t
i
c
 

P
r
o
s
t
h
e
t
i
c
,
 

b
l
o
c
k
s
t
a
c
k
i
n
g
 

S
m
a
s
h
i
n
g
 
t
h
i
n
g
s
 

U
n
d
e
r
w
a
t
e
r
 

0£ 
U-l 
X 

N
o
r
t
h
e
r
n
 
E
l
e
c
t
r
i
c
 

Cc
. 

L
t
d
.
 

R
a
n
c
h
o
 
L
o
s
 
A
m
i
g
o
s
 

H
o
s
p
i
t
a
l
 

R
o
t
h
 
A
s
s
o
c
i
a
t
e
s
 

G
e
n
e
r
a
l
 
E
l
e
c
t
r
i
c
 

u 
0 

4-1 
(0 
I-I 
3 

•H 
r 
CO 

E
l
e
c
t
r
i
c
 
A
r
m
 
- 

S
t
a
n
f
o
r
d
 

A
r
t
i
f
i
c
i
a
l
 
I
n
t
e
l
l
i
g
e
n
c
e
 

P
r
o
j
e
c
t
 

H
y
d
r
a
u
l
i
c
 
A
r
m
 
- 

S
t
a
n
f
o
r
d
 

A
r
t
i
f
i
c
i
a
l
 
I
n
t
e
l
l
i
g
e
n
c
e
 

P
r
o
j
e
c
t
 

A
l
u
m
i
n
a
u
t
 

-3-            m                 vo                  r«. 
i-H                      l-l                               i-l                                i-t 

n 

i, 
i 

o 
! 

! 

D 
r 

-18- 

l. 

I, 

L 
I 



t 

'; 

] 

:. 

:; 

Q 

;; 

D 
:. 

D 
D 
D 

i; 

CHAPTER III 

SOLUTIONS 

3.1  Statement of the Problem 

In remote manipulation it is desirable to place a rigid body (the 

hand) at a specified position in space with a specified orientation. 

Thus, a manipulator needs to have at least six degrees-of-frcedom.  More 

joints than six lead to a problem that is not deterministic with the 

specification of hand position and orientation.  We therefore limit this 

work to manipulators with six degrees-of-freedom. 

The problem we wish to solve may be stated as follows:  given the 

desired hand position and orientation, along with the various link 

parameters, find the values of the manipulator variables that place the 

hand at the desired position with the desired orientation.  This problem 

is related to the displacement analysis problem in three dimensional 

kinematics. 

The result of the displacement analysis of a mechanism is the 

relationships between input and output.  That is, if one link is driven 

in a prescribed manner, we wish to find the resulting position of the 

rest of the mechanism. 

The most general one degree-of-freedom, single loop mechanism is the 

so-called "seven-bar chain".  This mechanism is composed of seven one 

degree-of-freedom joints connected to one another in a general manner to 

form a single closed loop.  Mechanisms comprised of spherical and 

cyclindric joints may be derived from this seven bar by an appropriate 

-19- 
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and Hartenberg L^6J   has  also been used to analyze  four-link mechanisms 

[47,  48j.     For more  than  four   links,   this method has been applied using 

iterative numerical  techniques   [49J.     Urquardt    [50 J  showed that solutions 

were  possible where  the mechanisms had three  or more  prismatic  pairs. 
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choice of link parameters leading to kinematic equivalence, as discussed 

in Chapter II. 

If one considers a seven bar mechanism where one link is considered 

fixed, while an adjacent link is driven relative to it by motion in the 

connecting joint, then the position and orientation of the driven link 

are known. The prob'em of displacement analysis is to find the 

resultant configuration of the mechanism, or equivalently the motion in 

each of the remaining six joints. We then observe that the manipulator 

problem resulting from specifying hand position and orientation is 

analogous to the displacement analysis problem resulting from driving one 

of the links. 

il 

3.2 Survey of Existing Solutions 

Although displacement analysis of mechanisms has been of interest 

to kinematicians for many years, no method has been developed that can 

be applied to all cases.  Dimentberg [40, 41J obtained solutions for 

several four-link mechanisms uaing screw algebra and Dual numbers.  He 

also reduced the five-link RCRCR mechanism to the solution of a single 

polynomial of degree eight.  Yang [42] using dual number matrices, was 

able to express the input-output relation of this mechanism as a single 

polynomial of degree four.  Others have used (2x2) dual matrices, dual 

quaternians, and vector methods to obtain solutions of four link 

mechanisms C43, 44, 45J .  The (4x4) matrix method developed by Denavit 

1 
i. 
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Earnest [51J has found geometric solutions to several special 

manipulator configurations.  We present his solution to the manipulator 

shown in Figure 3.1: 

Referring to Figure 3.1, it can be seen that the 

point Q  lies on a line formed by the intersection 

of a plane perpendicular to axis 1 containing line 

J.   , and the pl^ne perpendiculai to axis 6 containing 

-^2 •  ln addition Q must lie on a sphere with P 

as a diameter.  The intersection of the line and the 

sphere thus fix Q . 

Sharpe [52] studies the problem of placing the end of a snake-like 

chain (which could be used as a manipulator) at a specified target.  An 

"n-link snake" is composed of n  links connected with revolute joints 

to form a planar chain.  The joints in general have continuously variable 

angles.  However, he does discuss the case where angles may take on 

only two values.  He presents an adaptive approach using a simple searching 

procedure to handle this case. 

AXIS  I 

Axis 6 

Figure  3.1.     Example manipulator used  to demonstrate  geometric  solution, 

-21- 



3.3 Method of Solution 

In this work, we use (4x4) matrices to attacK the manipulator 

problem.  Solutions for manipulators containing three intersecting 

revolute axes are presented.  The most complex of these requires the 

solution of a single polynomial of degree four.  This is equivalent to 

the solutions of all single loop five-bar mechanisms containing one 

spherical joint and the rest either revolute or prismatic.  Solutrons 

for manipulators with any three joints prismatic are also presented.  The 

extension to more difficult problems is discussed witha 6R, a?a/ 

manipulator having adjacent axes orthogonal used as an example. 

3.3.1 Notation 

Throughout the text we use scalar, vector, and matrix quantities. 

Matrices are denoted by capital letters and may have subscripts (e.g., A ). 

Vectors are denoted by underlined letters and may have subscripts and one 

or more superscripts in front of the lettei.  Vectoit, are generally used 

to locate points relative to a coordinate system.  The subscrij-ts are used 

to differentiate between points, while the superscript indicates the coor- 

i+1 
ainate system to which the point Is referenced (e.g.,   Xn , would repre- 

sent a vector from the origin of coordinate system l+l  to a point n). 

If no superscript appears It Is assumed to be  1 , or else no origin Is 

Implied.  At times we wish to express a vector In a coordinate system which 

differs from the one In which the vector Is formed (the so-called "refer- 

ence system").  If the system used to express these coordinates Is different 

from the reference system, we enclose the vector In brackets and use ai - 

et!- •;■ fripe'script to denote thn  system in which the corpoiionts are expressed 

'e.g., xl ).  If the outer superscript la not used. It is assumed 

-22- 
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to be the same as the inner superscript.  Scalar quantities are written 

as lower case letters, with or without subscripts (e.g.,  aisi )•  If 

they represent coordinates of points, then a superscript is sometimes 

used to designate the coordinate system to which they refer.  Where no 

superscript is used, the number  1  is implied.  Angles are denoted by 

lower case Greek letters with or without subscripts (e.g.,  Bi ^ ). 

Points are occasionally given a name (e.g., "the point  X2 ") and 

referred to by name. 

The trigonometric functions sin, cos, and tan are abbreviated 

s, c, and t  respectively (e.g.,  sin W  is written sH, , cos 01, 

as cO,. , etc). 

3.3.2 Mathematical Preliminaries 

In order to analyze the kinematics of a manipulator, we first 

establish the relation between two Cartesian coordinate systems as 

shown in Figure 3.2.  We define the following: 

a.:  the length of the common normal between   z-axis 

and    z-axis . 

i 

right-handed sense from  z along a line from  z 

»   i+1 to    z . 

01 :  the angle between    z and  z measured in the 

s.:  distance from 0.  to the common normal a 

H.:  angle the common normal makes with  x-axis. 

Then there exists the transformation [46] to express the coordinates of 

a point in one system given its coordinates in the other.  If we denote 

the coordinates in system i by  (ix, iy, ^-z)  and in system i+1 by 

(  x,   y,   z) , we define the vectors ^X and  1 X such that: 

-23- 



n 

and 

i+l 
X = 

i+1 

i+1 

i+1 

so  Chat  the  transformation  is: 

lX - A^h 

where 

A^ = 

c^  -so ca      sO.s^    ajcS 

SBJ    cfi,ca,   -c9.sa.    a.s6 

0 

0 

sai 

o 

i"1*!    aiaoi 

ca. 

The  inverse also exists and  is  defined by: 

i+1x - A^1 h 

where 

-1 

61 
sfi. 0 

•sB.ca      c^isa1    ^i    -s^cai 

so sa.    -cfl.sa.   ca.    -s.ca 

o o 

•24. 

(3.1) 

(3.2) 

I 

n 
i: 

I 

!, 

1. 



D 
i 

n 

ij 

u 

For n+1 coordinate systems there are n transformations between 

neighboring systems.  These may be multiplied, in the following order, 

to give the coordinates in the 1 system of any point fixed in the 

n+1  system: 

— 12 n   — 

Now to appropriately fix these coordinate systems in a manipulator, we 

make  1z correspond to axis  i , ^-x to comnon normal ai.i    and 

define  1y in a right-handed sense.  This is shown applied to a sample 

manipulator in Figure 3.3.  For a six degree-of-freedom manipulator we 

write: 

lX = A1A2A3A4A5A6 
7X (3.3) 

where  X is a vector to any point, expressed in the ground system 

and  X is a vector to the same point expressed in a system fixed in 

the terminal device.  We define 

Aeq = A1 ... A6 . (3.4) 

With this definition (3.3) becomes: 

,       7 
X = Aeq 'X (3.5) 

and the inverse yields: 

7X = Aeq'1 lX (3.6) 

Now, if we let  P be a vector from the origin of system 1 to the 

origin of system 7, and -£ , m , and n , be three unit vectors 

aligned with the  x,  y,  z axes respectively, then when ^£ ,  m ,  n   , 

and  P are expressed in system 1, they may be used with equation 

(3.5) to find Aeq .  That is, using (3.5) we may write 

-25- 



Figure 3.2.  Relation between two coordinate systems. 

Figure 3.3.  The relationship between coordinate systems fixed 
in the manipulator. 
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from which we may solve for the elements of Aeq  to obtain: 

Aeq = 
m 

(T 
(3.7) 

It is thus seen that position and orientation of the terminal device 

can easily be found, knowing the manipulator variables,  6^  or 

s., 1=1,.., 6 , by the matrix product equation (3.4). 

However, for computer control of manipulators, the problem is to 

find the manipulator variables, given the terminal position and 

orientation  (Aeq) . 

We shall first consider a six-revolute arm and the problem of 

finding Ö.,..., 6^ given Afeq.  Equation (3.4) represents twelve 

scalar equations, nine dealing with orientation and three with position. 

However, only three of the orientation equations are independent so that 

there are six equations in 8 ,.,,, 8  ,  These equations have terms of 

the form: 

cei ce2 cfl3 c64 063 cH6 , (3.8) 

sB^  CB2 cfL  sH.  sÖ,.  st)^ , ... 

These terms contain both sines and cosines, which we may define in terms 

of the tangent of the half-angle. 

c9H 

1-t -i 
2 

2 

■»j ■ 
2t2 

l+t2^ 
(3.9) 
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Then if we substitute (3.9) into the six equations, the typical term, 

as shown in (3.8) becomes (letting  t  = tan -^i , i*l,..., 6 , and 

removing the denominators which are common): 

2 2 2 2 2  2 

'l '2 '3 '4 '5 ^ + '•• 

Thus we see that these equations are quadratic in each of the unknowns 

and the degree of the highest degree term is 12. 

However, not all the equations contain all of the unknowns and by 

judiciously choosing the three orientation equations, the unknowns  fl, 

and  S,  can be eliminated froir some of the equations.  We use the 

six equations: 

(3.10) 

(3.11) 

(3.12,1 

(3.13) 

(3.14) 

(3.15) 

which are obtained respectively from the ' 14', '24', 'U', '33', •34', 

and '32', elements of the matrix of (3.4).  We note that (3.10)   (3.14) 

do not contain t^ , and (3.13) -  (3.15) do not contain  t. .  Of the 

five equations in which the variables  t,  tc  appear at most 

quadratica 1 ly, three equations are of degree 10, while, two are of 

degree eight.  If we eliminate  t  between (3.10), (3.11), and (3.12), 

the result is two equations of at most degree eight in the unknowns 

t2»...» tc whose total degree is 32. These together with (3.14) and 

(3.15) give us four equations for  to,..., t^ .  Proceeding in this 

-28- 
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manner eliminating one variable at a time, we would finally obtain a 

single polynomial of degree 524,288.  Even though this method of 

elimination introduces extraneous roots, we would still expect, according 

to Bezouts' theorem*, (10)  x (8)  or 64,000 common roots, a number much 

too large to cope with.  The general problem, attacked in this manner, 

is insoluble. At this point we shall define a "soluble case" to be one 

in which the degree of the final eliminant is low enough to find all 

roots.  In practice all the roots of an eighth degree polynomial can be 

found within a few seconds using a digital computer and the roots of a 

fourth degree within one-half second. A solution is said to be 

"closed-form" if the unknowns can be solved for symbolically. 

Even though the general problem is beyond reach, many practical 

manipulator configurations are soluble.  The existence of three revolute 

axes intersecting at a point leads to a soluble class.  In the next 

sections we explore the possible combinations of three intersecting axes. 

3.3.3.  Last Three Axes Intersecting 

If the last three joints are revolutes and their exes intersect 

as in Figure 3.4, then their point of intersection, as designated by the 

vector P-j is only a function of motion in the first three joints and 

the constant link parameters.  P-  is known by specifying the hand 

position and orientation.  We want to solve the three scalar equations 

represented by: 

^3 
rt 1 rt r\t\ *} 

0 
0 

•i 
1 

(3.16) 

♦Bezouts' theorem gives an upper bound to the number of common solutions 
for a set of equations.  The upper bound is the product of the total 
degrees of all the equations. 
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Figure 3.4, The most general manipulator having the last three revolute 
axes Intersecting. 
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for the variables associated with the first three joints. We now derive 

an Important result used In the solution of this problem.  We define 

(3.17) 

where A* (i ■!»••.» J)  Is defined In equation (3.1).  It Is seen 

that Pj Is a vector specifying the position of a point (0, 0, s. ,) 

which Is fixed In coordinate system j+1 . 

We may write (3.17) as 

the  vector -PJ 0 
0 

^j = Al   ' •AJ 
sj+l 

1 

Pj « (A1A2) A3 ... A 
J+1 

A1A2 

V*}  flj) 

f2(83...., flj) 
(3.18) 

where 

J+1 

(3.19) 

Then using (3.1) for Ai and A2 (3.18) becomes 

ce1g1 + se1g2 

h 
8ei«i •182 

^8a1[sQ2(a2 + fp   - ce2(-ca2f2 + sajfs)^ 

+ ca1(9a2f2 + ca2f3 + s2) + ■! 

l 

(3.20) 
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where 

gl = cö2(a2+f1) + se2(-ca2f2 + sa2f3) + al (3.21) 

g2 ■ -se2ca1(a2+f1) + c^2cal(-ca2f2 + sa2f3) 

+  s'i1(sa2f2 + ca2f3 + s2)     . (3.22) 

Denoting  the components  of    P*     by    x.   ,   y.   ,   z.   ,  v;  define 

Rj = x5 + yj + (zj"s])2 • (3-23) 

With  (3.20)   for  the  components  of     (?.)   ,   (3.23)   becomes 

Rj  =  l^ + f2
2 + f3

2 + a^ + a2
2 + s2

2 + 2a2f1 

+ 2s2(sa2f2 + ca^fj)  + 2a1L c?2(a2',"f P 

+ sp2(-ca2f2 + sa2f3)] (3.24) 

We note   from  (3.20)   and   (3-24),   that we may write: 

R]  =   (F1ce2 + F2sp2)2a1 + F3 (3.25) 

zj  =   (F1«e2  -   F2cy2)sa1 + F4 (3.26) 

where, 

I 
Fl a a2 +  fl (3.27) 

F2 =-ca2f2 + sa2f3 (3.28) 

F3  =  f^ + f2
2 + f3

2 + aj2 + s2
2 + 2a2f1 + a2 

+ 2s2(sa2f2 + ca2f3) (3.29) 

F4 = ca1(sa2f2 + ca2f3+s2) (3.30) 

Equations   (3.25)  and  (3  26)  prove  to be  very useful as  Ö,   has 

been eliminated,  and     42    appears   in a very simple  form. 

Returning  to  the manipulator  problem,   the above equations 

apply with     j   =   3.      In which  case  by using   (3.1)   for    A-     (3.19) jT] 

becomes: 

0 

0 

1: 
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Ö 

'fl 

f2 m 

h_ 

s4s938a3+a c93 

-S4ce38a3+a3s93 

84crt3+83 

(3.31) 

so that with (3.21), (3.22), and (3.31) equation (3.20) represents 

three equations in three unknowns.  If the first three joints 

are prismatic, then (3.20) represents three linear equations and 

is easily solved.  The othe^ possibilities are somewhat more 

difficult, but may be solved as follows: 

3 Revolute - ^l,_^2»—3    all variable 

Substituting (3.31) in (3.27) - (3.30) yields respectively 

Fl = a2+8, S03sa'i+a3c93 

1+ tan       j 

2 

•33- 

(3.32) 

(3.33) ^2 =-ca2("8Ace3sr,3"w38e3) + 8rt2^83+84crt3^ 
2       5       2       2       2       2 

F3  = a^ +8- +82 +s3 +a3 +s.   +2s283ca2+2s2S,002013 

+ 283s4ccx3+ce3(2a2a3-2s2S48a28a3)  + 893(28382802 

+ 2a2848a3) (3.34) 

F4 = CQ,, |.a3893sa2+s3ca2+82+84("ce38a2sa3',"ca2c£I3^ (3.35) 

Now we note  that  the   left hand nide of  (3.25)  and  (3.26)  are 

known and  that  if    a^  = 0   ,   (3.25)  reduces  to 

R3 " F3 (3.36) 

When  (3.34)   is used  in  (3.36)   it is simply a  function of    93  . 

Then making the additional  substitution 

1-tan2 93 
c9,    =     L (3-37) 



2 tan 63 

se^    = I (3.38) 
J 1 + tan 83 

2 

•34- 

0 
into (3.36), yields a quadratic in tan 9-> . Similar simplifi- 

cation results if snrj=0 , as (3.26) reduces to a quadratic. If 

however sc.i and a, are non-zero, we eliminate 8^2 and c^j 

from  (3.25)  and  (3.26)     to obtain the polynomial 

D (R3 - F3)2  («- F4)
2     2    2 

—      +    ^— ■ F^ + F2 (3.39) 
2a!        sn-^ 

Upon making the  tan 93  substitution and using (3.27) - (3.30) equation 
2 

(3.39)   is of degree  four  in    tan 93    .    After getting    93  , 92 
7 

may be obtained  from  (3.25)   or   (3.26)  and    9i    from  (3.20). 

!: 

^l»_®ii—§3    variable 

Here we take the    x    and    y    components of    P3    as defined 

in   (3.20) 

x = c91g1 + s91g2 (3.40) 

y =  s91g1  -  cQjgj (3.41) 

Solving  for    g^    and    g2    we  find 

gl = XC9! + ys91 (3.42) 

g2 = -yc91  + xsQ] (3.43) 

so that    g^    and    g2    can be computed from x3.42)  and  (3.43). 

Then examining  (3.2i)  and   (3.22)  using  (3.31)  we note 

g! = c92h1(93)  + s92h2(93) + a^^ (3.44) 

g2 = ca1[c92h2(93)  - s92h1(93)] + sn,^^) (3.45) 
1 • 

L 
i: 



where 

h,   = 3^89330.3+83003 (3.46) 

h2 " sA(ce3ctt2srr3+sa28a3)  " 83803^02+s3sa2 (3.47) 

^3 " 84(-c038a2a^3+ca2ca3) + a38e38a2 

+ 83002 + 82 (3-^8) 

If    cai = 0    then  (3.45)   is  easily solved  for    93   .     If 

co.   ^ 0    we eliminate    02    from (3.44) and  0.45)   to get the 

i; 

polynomial 

2 2 2 
hi    + h2Z -   (8,-«!) 

L. 
örr,! 

Expressing 803 and c9,  in terms of tan 93   leads to a 
J 7 

polynomial of degree four.  Upon obtaining the four roots of 

(3.49) we substitute into (3.44) and (3.45) to get 92 and 

finally (3.20) for Sj^  . 

Q\t   89,  9^    variable 

Solve (3.26) for 82 , using this in (3.25) results in a 

fourth degree polynomial in tan 93 . Then proceed as in all 

revolute case. 

[I 
9^,  02,  S3    variable 

Similar to    9^9293    variable with the exception of    s- 

being the variable in the  final polynomial which is  of degree 

II four. 

(3.49) 

lLS2^3 var^ahle 

The   left-hand side  of   (3.44)  may be computed  from  (3.42),   then 

(3.44)  which is quadratic may be solved for    93   .     Finally    s^    and    S2 

may be  found  from  (3.20). 
-35- 



1L§2^3 variable 

It Is possible to eliminate 02 as in the case of s^öß 

variable, resulting in a quadratic in s- . 

i*ll2ih variable 

Equation (3.25) is solved for 82 and used in (3.26) resulting 

in a quadratic in S3 , 0^ is found as in the all revolute case. 

Methods have been presented to find the first three variables. 

At this time we leave the problem of finding the Ifst three angles to 

be dealt with later in this work (see Section 3.3.6). 

3.3.4 First Three Axes Intersecting 

Next consider the three intersecting axes to be the first 

three, as in Figure 3.5.  The solution of these is analogous to 

the previous exair~le.  We define a vector  ^P from the hand to 

the point of intersection of the three axes, as shown in Figure 3.5. 

We note that when 'P is expressed in a coordinate system fixed 

in the hand, that it is just a function of the last three joints. 

That is: 

7P = A, 
1 -1 -1 

0 
0 
0 
1 

(3.50) 

To Usiag  (3.2)   for    A3'       and forming    A3        0 

LLI 
we get 

7P - A^Aj'V1 -a3 
-S3sa3 
"s3ca3 

1 

(3.51) 

If we use  (3.2)   to express    Ag       , A5       ,  and    A4 then the 

right-hand side of.(3.51)  just contains  the  three variables associated 

-36- 
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with  the  last  three  joints.     In addition,  we compute  the components 

of     'P    from 

7P  = Aeq  ■1 

where Aeq is the known matrix (3.7).  We note that the rotation 

portion of Aeq   is just the transpose of the rotation portion 

of Aeq .  In fact, if 

Aeq = 

all a12 a13 ai4 

a21 ä22 a23 a24 

a31 a32 a33 a34 

(3.52) 

then 

Aeq -1 

all a21 a31 al4 

a12 a22 a32 a24 

a13 a23 a33 a34 

0 0 0 1 

-1 

-1 
(3.53) 

The elements denoted as a^'     ,  a2-"  , 834"  are determined by 

simply applying 

thus 

Aeq"^ Aeq ■ I 

-1 
(3.54) ai4 = -(alia14 + a2ia24 + a3ia34) 

1=1,2,3 

From this point on the method of solution follows the same steps given 

in Section 3.3.3 for the case of the last three axes intersecting. 

. 

-37- 



:: 

[ 
i: 
: 

■ 

i 

Figure 3.5.  General Manipulator in which the First Three Revolute 
Axes Intersect at a Point. 
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3.3.5 Three Intermediate Axes Intersecting 

Another possibility is for the three intersecting axes to hr. 

located as in Figure 3.6, where there are two other joints toward 

the base end and one on the hand end.  We denote the position of 

the point of intersection by X2 with the coordinate  (x,, y , Z2) 

and define the vector X2  from the base of the arm to X2 and the 

vector  'Y«  from the origin of system 7 to X2 as in Figure 3.6. 

Consider the case where all joints are revolutes, then in 

system 7, the hand system, the point X2  has a fixed z co- 

ordinate, and is a constant radius from the origin. We write 

the coordinates of X2  in system 7, using equation (3.5) and 

Aeq as defined in (3.53) 

(3.59)  becomes 

c2  =  x2 + y2 + z2  "  2x2aI4  "   2y2a24  *   2z2a34 

+ af4+ a^ + a^ (3.60) 

where  (3.54)  has  been used  for    a^  "       i  =   1,2,3 

7x2 = allx2 + a2iy2 + a3lz2 + ai4*1 <3-55) 
7 , 
^2  = al2y2 + a22y2 + a32z2 + a24 (3.56) 

7z2 = a13y2 + a23y2 + a33z2 + a34 (3.57) 

Since     '22     is a  constant,   say    C^   ,   (3.57)  may be written 

1 = a13x2 + a23y2 + a33z2 + a34 (3.58) 

We define  the  constant,     C2,   to be  the  square  of  the  radius 

C2  =   (7x2)2 +  (7y2)2 +   (7z2)2 (3.59) 

Then using (3.55),   (3.56), and (3.57)  for     7x,   7y, and 7Z 

-39- 
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Figure 3.6. Manipulator with three Intermediate revolute axes Inter- 
secting  ( I.e.  a =s =a =0 ). 
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With     j  =  2     (3.20 becomes 

[a2(ce1c92-s01s02ca1)  + S2s9  sa.+ajcQj + s   (00 se2sa2 + 

89^92^250,2+89^^2)] 

[32(89^92+091892001)   -  8209,80]^ + a^i 

+ S3 (89289280.2-09^92001sa2-09^2002)] 

[32892802 + 82002 + 82 + 83 (-092802802+002002^ 

1 

snd  (3.27)  -   (3.30)  become 

Fl  =a2 

F0  =  83SO2 

F3    =   31+8^+3^+82+2328.002 

F4 - •3ca1ca2+t2 

So thst using (3.62) - (3.65) snd (3.23), equstion (3.39) becomes 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

.2222222. , 
^X2  y2     2"al'S2"a2'S3       2S3ca2^ 

23. 

Z2-S3C0 2c<l2"s2 

so 1 

2    2    2 
■ 82+8-802 (3.66) 

Then  (3.58),   (3.60)  3nd  (3.66)  3re  three equstions  for  the unknowns 

(x2y2Z2).     Ordinsrily  the system would  result  in 3n eighth  degree  eliminant 

but  since   (3.60)  3nd   (Ö.66) may be  combined  to form 

~,r ^ ^ ^ 2       2       2,2222- 
(C2+2x2a14+2y2a2^-Z2a34-al4"a24-a34)-arS2"a2-S3-2s2S3Ca2 

2a 
I 

Z2*S3calca2"S2 

so. 
32   +   S3SO2 (3.67) 
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The  equations   (3.58)   (3.60)   and   (3.67) may be  combined  to yield 

a  single   fourth degree  polynomial  In one variable,   say    z   , 

After  the values of    z    are  determined It  Is  possible  to back 

substitute and obtain corresponding values  for    x    and    y  . 

Once  the coordinates     (X2,  y2,  Z2)    of  the point    X»    are 

found,     92    and    9      may readily be  found from equation  (3.61). 

9^     Is easily evolved by noting: 

7.. 

'72 

7«2 
^2 

-1 

•a5 

•858a5 

•s5ca5 

Using  (3.2)   for    Ag       ,  with    a,  = s^ » 0  ,   (3.68)  becomes; 

12 

.a5c96 85896 

(3.68) 

(3.69) a5896ca6 + 85(-c968a5ca6-ca59a6) 

-a5s96sag + S5(c9g8a59a6-ca5ca6) 

l 

Since  x2,   y2 and Z2    are  known  (3.55)^3.56)  and  (3.57) may be 

used  to calculate    ^^2'    Then  (3.69) may be solved  for    9g  .    The 

problem of solving for    9^ 94 95    will again be deferred  (see 

Section 3.3.6). 

The preceding solution was  for all revolute  Joints.    We now 

consider  the cases  in which  Joints  1,  2, and 6 may be  prismatic. 

lL§2§6    variable 

Eliminating   s 92    and    c92    between the    x-    and    y-    components 

of   (3.61)  results  In a  quadratic  in    X2    and    y2   .     Then this equation along 
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c + b t  , (3.70) 

where    b    is a unit vector parallel to this  line and    c    is any fixed 

point  on  the  line.    Eliminating    t  ,  yields  two equations  between 

x2  »  y2  »  and    z2 •    Th60 with  these in place of  (3.58)  and  (3.60), 

the procedure is  the same as  previously indicated. 

The second possibility for  three intermediate axes  to intersect 

is as shown in Figure 3.7.     This  is  just an inversion of the case 

treated in this section and may be solved in a similar manner. 

-43- 

with (3»58) and (3.60) can be reduced to a single fourth degree poly- 

nomial in either x« or y2 . 

®ll2—6 variable 

Forming (3.25) and (3.26) with  j = 2 aud then eliminating S2 

between them, a fourth degree equation results in a manner similar 

to the all revolute case. 

1LS2^6 variable 

First  32 may be eliminated between the x-  and  y-  components 

of (3.61).  The resultant is a linear equation which along with (3.58) 

and (3.60) can be combined to form a single quadratic. 

If St    is  variable instead of 0 , equations (3.58) and (3.60) 0 6 

no longer apply. However, the point X2 must lie on a known line. 

This line, in the direction of axis 5 may easily be found, and may be 

written in terms of two known constant vectors c and b and the 

parameter t as: 

"x2" 



3.3.6 Completing the Solution 

It can be seen from the foregoing that if three adjacent revolute 

axes intersect at a point, then the solution to the problem can be 

reduced to a single equation of degree four.  If, in addition, two of 

the remaining three joints are prismatic, the problem redv;es to a 

quadratic. 

Simplification will also result, if special geometry exist in 

additinn to the three intersecting revolute axes.  Consider the all 

revolute case, with only a^ , a2 , and s,  non-zero and 

04 = 90°, (12 = 0 , 013 = 90°, a4 = 90°, a5 = 90°, as shown in 

Figura 3.8. This is the configuration used for the hydraulic arm at 

the Stanford Artificial Intelligence Project.  With the above values, 

equation (3.17) becomes 

a^Q^ + a2c91ce2 + s, (c01ce2
s93+c91s92c93) 

als9l + a2seice2 + S,t(s91c92s93+s91s92c93) ( J . 7 1) h 
a2S02 + S4(s92s9 -cri2c9 ) 

_ 1 
and (3.27), (3.28), (3.29), and (3.30) become 

Fl  = a2+s, s9-j 

E2 - s4c93 

F3 = 2a2S S93 + s^2 + a-2 + aj2 

F4 = 0 

So that equation (3.25) becomes: 

R3 = s42 + a22 + al2 + 2a2S4s93 + 2a1a2c92 + 2a184(c92s93 

+S92C93) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

. 

ii 

y 

(3./6) 
II 
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Figure 3.7. Second possibility for the case of the three intermediate 
revolute axes, shown intersecting at the point x . 

Figure 3.8.  Schematic of the 6R, aas manipulator used at the 
Stanford Artificial Intelligence Project, with o< =90°, 
<*2=0, <X3=90

O, Ot4=90
O, 0^=90°. 
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and  (3.39)  becomes: 

R.3-(2a284893+84
2+a2

2+a1
2) 

—, 2 

+ z2 =  (a2+84893)
2 + 84

2ce3
2 (3.77) 

which  ia quadratic  in    80-    when    cQ-f    is replaced by    1-89      . 

After  finding    %^    we compute    $2    froin (3«71) and  (3.76)  and    9, 

from (3.71). 

Since the above arm is useo in the Stanford Artificial Intelligence 

Project,  we shall use it  to illustrate the method of finding the angles 

associated with the three intersecting axes.    Designating the direction 

en of the  lüi axis by the unit vector    y^ , we write 

«ft " A1A2A3A4 (3.78) 

Using  (3.1)  for    A^,..., A,     and the above values  of    a    the 

result  is 

c9^c92s92 + c9js92c9o 

^ ■      89ic92s93 + 8e1s92c93 (3.79) 

s92s9ß -  c92c9-j 

0 _ 

so that    0)4    may be computed from (3.79) as we have solved for    9^  , 

82  ,  and    03  •    igg    is known since the hand orientation is specified. 

In addition, 

MJ4 . jfij - co8a4 (3.80) 

iK5 • JJ16 " cosa5 (3.81) 

MS • JK s ^ (3.82) 
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where n,     and de are link parameters of the arm.  In fact 
4       5 

a^ -90° and ou ■ 90° . We can find the components of 015 by 

simultaneously solving (3.80), (3.81) and (3.82). We observe 

7r«..1 - A,"^ "1 ^5] 

0 
0 
1 
0 

(3.83) 

using  (3.53)   for    A6        and    A5        with    a4 - ttj - 90°    and    a6 

(3.83)  becomes: 

'"sG< 

7 
Ctt.] 

ce( 

0 

0 

(3.84) 

and 

7[(j!5]  = Aeq"    mj (3.85) 

where    Aeq    is  the known matrix specifying hand position and 

orientation equation (3.7).     Its  inverse is found as  in Section 3.3.4. 

So that we easily derive    9,     by equating the right-hand sides  (3.84) 

and  (3.85).    We also write 

w = \ A5 Vl 

0 s95c96 

0 
X 

-s95s96 

1 -c95 

0 0 

(3.86) 

and 

[^] - Aeq jij (3.87) 
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which yield    9,   .    To obtain    9.     we proceed similarly 

7
ü«3] - \ vV1^"1 

0 sG.cG-cG, - 4 5 6 C04806~| 

0 -80.cQ 80, 
4 5 6 - ce4ce6 

1 804805 

0 0 
—1 L_ _J 

(3.88) 

and 

7[UJ3]  - Aeq"1 ^ (3.89) 

which yields    0,. 

We have indicated a procedure to find the rotation about three inter- 

secting revolute axes when these are located at the hand.    The method 

is applicable when any three axes Intersect.    However,  the equations 

must then be rewritten in terms of the    Wj_ and    0^    associated with 

these axes. 

3.3.7    Solution for Any Three Joints Prismatic 

A six degree-of-freedom manipulator with any combination of three 

revolute and three prismatic  Joints is soluble.    This arises from the 

fact that,  the orientation of the hand is Independent of the displacement 

in the prismatic Joints, and  is only a function of rotation in the three 

revjlute Joints.     In addition the orientation is independent of the 

position in space of the revolute axes.    Consider the manipulator shown 

schematically in Figure 3.9.     The direction of the  first revolute axis 

is always fixed.    With the hand orientation specified,  the direction of 

the third revolute axis becomes fixed.    In addition we know the angles 

which the axis of the second makes with the axes of the first and third 

revolutes.     If we designate the direction of these revolute axes by the 
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unit vectors, Uh ' ^3 » and ^5 tlien we ,nay write 

12 • J|3 ■ cosBj (3.90) 

■3 • IS ■ C08ß2 (3.91) 

«3 • % - 1 (3.92) 

where Bi and B7 are the known angles. The equations (3.90) 

(3.91), (3.92) are then solved for the components of cy^ . The 

Joint angles may be found in a manner analogous Zo  that used in 

the previous example, as the now known direction UJ. • can be 

expressed only as a function of O2 which leads to a simple 

equation for 9» . ^-  can also be written in terms of 9  alone, 

yielding 9, .  Once 92 and 9c are known,  9.  is easily found 

by rewriting (3.4) as 

A3 " A2" Al    Ae<lA6 A5' A4 

l\ 

ll 

D 
il 

D 

il 

11 

0 

Using the values we found for    9?    and    9      plus  the constant angles, 

we compute the rotation portion of the right-hand side of the above 

equation.    Then writing    A-,    as  in  (3.1),  we may solve  for    c9j    and 

s9~   ,   thus  finding    9-   .     The displacements  in the  prismatic Joints may 

be found from (3.4).    Since all the angles are now known and the s's 

only appear linearly,  the displacement portion of  (3.4) easily yield 

these  three unknowns    s^   ,   s,   , and    s    . 

3.3.8    More Difficult Arrangements 

In the previous examples,  the existence of three intersecting 

revolute axes enabled us to separate the problem into two parts - 

one dealing with position and the other with orientation.    The two 

problems were chen solved separately.    That is we solved a three 
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degiee-of-freedom position problem and then a three degree-of-freedom 

orientation problem. A more difficult problem is one in which potiltion 

and orientation do not separate. An example is the case where Just two 

revolute axes intersect. Consider the 6R , a,S2*2B'iBiiaLa5a5    man''" 

pulator shown in Figure 3.10. Here axes 3 and 4 Intersect. The vectors 

7P i S i and R are a& shown in Figure 3.10. We make the following 

observations: 

Q - A1A2 

^-VS" 

0 
0 
s3 
1 

-a4 

UJ3 - A ^2 

0 
0 
1 
0 

7Ca.4] 
0 

A'lA    lA -1 0 
6      5      4 1 

0   J 
lr7 c'p] - a - R 

Then using (3.1) for the A's (3.93) - (3.96) become (taking 

«! - s6 - a6 - 0) : 
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Figure 3.9.     A general    P-2R-P-R-P    manipulator. 

Figure 3.10.     A    6R.ai82a28384a4S5a5    nuinlPulator-    Axe8 of  Joint8 

3 and 4  Intersect. 
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7P = 

S3(c91s92sa2+s91ce2ca1sa2+s61sa1ca2) 

s3(8e1se2sa2-ce1ce2c318a2 - c91sa.1ca2) 

+a2(se1c92+ce1892ca1) - 82ce1sa1 + a1s91 

s3(-c9 sa1sa2+ca1ca2) + a2s92sa1 + 82ca1 

l 

a4(-c95c96+s95896ca5)   - a5c96  ••   s58968a5 

+84(-895c96sa4 - c95s96sa4ca5-s9bQi48a5) 

a4(c95s96+895c9,cac)  + acS9,   -   s  c9,sa.5 

+84(s95s96sa4-c95c96so4ca5 - c96ca4sa3) 

-a4895sn5 + su(cQ5saUar'5'Ca^ca5^   '  s5ca5 

■3 

7[^J 

c9 s928o,2 + 891c92ca18a2 + 89 sa1ca2 

s918928a2 - c91c92ca1sa2 - c918a1ca2 

-c928ai9a2 + caica2 

895c963n4  ♦ C95s96sa4ca5 + 89(>c^8rl5 

-s95896sot4 + c95c968rt4ca5 + c96co4sa3 

-c95sa48a5 + ca4ca5 

0 
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(3.99) 

(3.100) 

(3.101) 

(3.102) 
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In addition (3.99) and (3.100) respectively yield 

2 - 83 + ^2    + 82
z + a^ + 2a1a2C02 + 2ai838a28e2 + 23283002   (3.103) 

7Z2 ■ a42 + 852 + as2 + 842 + 2a4a5ce5 + 294a5s, S^A + 284850014  (3.104) 

Our approach to this problem is to solve for the coordinates (x, y, z) of 

the point of intersection of axes 3 and 4.  With this in mind we 

eliminate 82 between (3.99) and (3.103) which yields the polynomial: 

2 I 2 _   ,„.2^.  2^,_2J-  2. (SßS-a? +82 4a,  -^s^s-^CGp) 

2a, 

1— —2 
z - S2cai - 83ca1ca2 

L     ^i   _ 
2, 22 

a2    + 83 ■a2 

where we have defined 2 ^n terms of its components 

and 

y 
z 

Q2  -  x2 + y2 +  z2 

Similarly eliminating    85    between the z-component of  (3.99)  and 

(3.103)   leads  to 

[- Z
2 -   (a42+8c

2+a «5^4^848^004)]' 
2a5 J 

—, 2 
2+84004005+85005 

so. 

2      2 J 
84''804    + 84 

We note    ^p]   ^C^] - 7P .   7P   and using  (3.98)  for    ^V)' 

we form 

7p2 . 22 + R2 -  22 .  R 
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(3.105) 

(3.106) 

(3.107) 

(3.108) 

(3.109) 
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ilso 

Aeq -1 y 

z 

1 

(3.110) 

where    Aeq Is defined as  In equation (3*S3)a     'flius using  (3.100) 

for     7z   ,   (3.109)  for    V   ,   (3.108)  becomes 

22  + R2  - 2ß .  R  -   (a4
2-^5

2-^5
2-ts4

2^2s48[.ca4 

2a.; 

i13x + 8237 + a33z + a14~    + 8^ca^ca5+B5ca5 

sa5 

84
2'a42 +a4

2    (3.111) 

We next want  to express    ^3     and    IJV     in  terms  of    x      y   ,  and    z 

and use  the relation 

Uj • t^ ■ cosa3 (3.112) 

For  this we need    cOj   ,  80     ,  082   ,  sO-   , eft    ,  sft,   ,  c9     ,   sft      explicitly 

expressed in terms of    x  ,  y  ,   z   .    We note     ^    and    S82    ar^ 

simply obtained fron the z-components  of  (3.99),  and from (3.103) 

and are 

a2   [22  -(S32 W-fa^283^231 ^ ^^  -(82ca1-f33ca1^2)] 

2a, ^1 

eft,  - 

»22 + 8328a22 

(3.113) 
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e2[z -(82ca1-^3ca1ca.?j     » 83sa2  1^ ~(s:i
2+azZ-hi2

2+a12+282s3c(l2')\ 
sai 2a!     L J 

80, "  
a2     + 832sa22 

(3.114) 

c9i    and    sflj    from (3.99)  are,  after simplification 

m x(838e28a2+a2ce2+al)  ' ' [s3(ce2Calsc2+8alC;a2^   " a2B92c^i + s28ai] 

x2 + y2 

(3.115) 

y(83s928a2+a2ce2'fal^+ x[f3(ce2caiaa2'f8alca2^  " a2s02c^l  + s2s'llJ 
39, 

x2 + y2 

(3.116) 

Where we may use (3.113) and   (3.114)  for    082    and    se2  .    When  (3.113) 

(3.114),   (3.115) and  (3.116) are used in (3.101)  to express    ^3    m 

terms  of x  ,  y , and z  .   the result  is a third degree expression in 

x , y ,  and z  .    If we do similar things with    Ü5    and    9^    lot    ^ 

then (3.112)  becomes a polynomial of degree six In    x  , y ,  z   .    Tliis 

along with  (3.103) and (3.111)  are  three equations  for    x ,  y  j  and 

z  .    However,  they are of such  large degree that finding all  the roots 

is not feasible.    Though there are some special cases of interest. 

For a    6R (   8284    manipulator, with   a^ " (13 s ttt " 90°    and 

012 Ä (14 = -90° the equations reduce  to a degree which  is workable. 

This configuration is shown in Figure 3.11.    Equation (3.105) reduces 

to 

x2 + y2 + z2 - a2
2 (3.117) 

and (3.111) reduces to 

x2 + y2 + z2 + x4
2 + y4

2 + z4
2 - 2xx4 - 2yy4 -  2z4z - a4

2  (3.118) 
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Figure  3.11.    A oR,a a.   manipulator with adjacent axes orthogonal. 
X   (x,y,z)   is   the point of  intersection of axes  3 and 4. 
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where    R    in  (3.111) has been replaced by its components,    x4  »  YA   i  z, 

and the indicated dot product performed. 

(3.99),   (3.100),  (3.101),   (3.102) reduce to 

7p- 

1Ü3 

V] - 

a2ce1ce2 

a289lce2 

82882 

"-a4ce5ce- 

a4ce58e6 

-a48e5 

1 

■-ce18e2 

-8e1se2 

ce. 

■se5ce6 

sOjsOg 

cO^ 

from (3.119) we obtain 

c«l m X 

82082 

■•l ■ v 
a2c92 

802 « z 
a2 
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(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

(3.125) 
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using  (3.123),   (3.124),   (3.125)  in  (3.121) 

^3   n 
•2Zc92 

•xy 

•yz 

HW 
(3.126) 

replacing    cfy      by    1 - 882      and using    8e2    from (3.125),   (3.126) 

becomes 

1113 

from (3.120) we obtain 

RT 

-xz 

•yz 

■z2+a2
2 

(3.127) 

c«6 " 84085 

8e6- 84083 

se5- -7z 
a4 

(3.128) 

(3.129) 

(3.130) 

substituting (3.128), (3.129), and (3.130) in (3.122) and simplifying 

gives U3 

7 
CUI4] -m* 

.7 7 
y z 

-v, 
z +a/. 

(3.131) 
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We now rotate       [ml    to express  it  in terms  of  system 1 by 

1U4 * Aeq  Qi^] 

with    Aeq    as  in (3.53) and    7[u^]    as  in (3.131) we get 

•B11
7X7Z - a12

7y7z - a137z2 + a^a^ 

"a2l ~ a22 '  z  " a23 z    + a23a4 

(3.132) 

IU4 rxn? 1    -      z 
a4 

V  7 7  7 7 2 2 -anj/x z - 832 y z - aßß z    + a33a. 

(3.133) 

To eliminate    7x  ,   7y  ,   7x    from (3.133) we use   (3.110) with Aeq    from 

(3.53) which after simplification yield: 

-(a13x4a23yfB33Z+a3/|     ) (x-x4) + ajja^ 

-(a13x-fa23yfB33z4a34"1)(y-y4) +8238^       ^3  134) 

-(a13x+a23y-^B33Z+a34"1)(z-z4)  + a33a4
2 

0 

** 
*h' 

Then using  (3.127)  for    ^3    and  (3.134)  for    ^    the equation 

1Ü3  * iü4 * ^    results  in the  polynomial: 

z(a13X+a23r+a33Z-^34"  ) (x2+y2-f^2_XX4_yy^-zz^.a2 -^^2) 

-12. 2/        ^       ^       ^    "U 2    2 
+ za34    a4    + z4a2-c(ai3X-ha23y+a33z+a34    )  + «2 a4 a' 

(3 135) 

•2 a4 a33 

We note that linear combinations of the equations (3.117), (3.118) and 

(3.135) can be formed to reduce the degree of the equations. 

Equation (3.117) we leave as is.  Combining (3.117) with (3.118) 

leads to 

2x4x + 2y4y +i4z + a4
2 - a^ - (x^^2^2) - 0   (3.136) 

and using (3.136) and (3.11/) in (3.135) yields 
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o = «c^Ä-. x42 + yu + H1 . f^)i 
2 2 

13     ,     a22        ^2 + y42 + z42        a42  vT 
ZJ 2 2 2 

+ y,[«,,<- a±-  . 

+ z2[ao,( 33v 2 
x^2 + y^2 + Z42 ^2 1 

+ x (a13
z4a2 ^ 

23Z4a2' 
+ y (a-.z.a,2) 

-1- 2 
a2  . ^4 •>• y4 1 z4  . a4 

(3.137) 

az2 
+ Z [(«33z4a2'> ■f«34'W fa34 <  2 

2-1^22 
+ z4a2 a34  + 82 a4 a33 

The equations (3.117), (3.136) and (3.137) are three equations for 

x , y , and z .  The linear equation (3.117) can be used to eliminate 

one variable easily. Another variable can be eliminated between (3.136) 

and (3.137) leading to a polynomial of degree four.  This procedure 

has been carried out and programmed on the PDP-6.  An analysis program 

was used to generate inputs with known angles to check the results. 

A typical example was generated by the arbitrary input angles 

%l  - 34° , 92 - 21° , 93 - 780 , e^ -_56o > e5 . 230 , 96 - 1° and 

link parameters a2 " a. ■ 15" , which gave: 

)] 

Aeq 

-0.322 -0.481 0.816 12.066 

0.555 0.641 0.577 18.035 

-0.801 0.598 0.037 -5 609 

0 0 0 I 
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For the above, the four sets of common roots were real and lead to 

four sets of angles for each root.  They are shown in Table 3.1. 

If aitO    then the solution may first be expressed as three 

quadratic equations in three unknowns (x , y , and z) and finally 

as an eighth degree polynomial. With aj^O , a^^O , a^0  » and a's 

as before, and with x , y , z defined as before, (3.105) becomes 

(x2 + y2 + z2 . ai
2 . 322)2 + 4ai2 (z2 . ^2) = 0 (3.138) 

and equation (3.111) reduces to (3.118) as previously noted. To 

form UQ we use cOj and s9 from (3.115) and (3.116). Next 

we use cQ. and se2 from (3.113) and (3.114) and substituting 

these quantities into (3.101), we obtain after simplification: 

||U 

U2^i*n  (x2ty2^2~a2
2-a1

2)] 

- 2xz 

- 2yz 

- 2z2 + (x2-fy2+z2-a22) + 2a^2  . ^2 

0 
(3.139) 

U^    is as beiore and given in (3.134).    By using  (3.139) and  (3.138) 

in  (3.112)$  by replacing  (x2+y2+7.2)    with its equivalent from (3.118), 

and by simplifying,   (3.1J2)  becomes: 

0 =      x2(2a13Z4x4) 

+ y2(2a23z4y4) 

+ z2[a33(-R2-a4
2+a1

2-a2
2)  + 2a33Z4

2] 

+ xy[2a13Z4y4 + 2a23Z4x4] 

+ yz[2a23Z4
2 + a23(-R 2-a4

24a1
2-a2

2)   ♦■ ^i^] 
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2 5       2      2       2 
+ zx[2a33z4x4 + 2ai3zu    + a13(-£   -a4 4a! -aj^  )] 

+   x[a13Z4(-R
2+a4

2-a1
2-ta2  )  + 2a33a4

2x4 + 2a34'
1z4x4] 

+   y[a23Z4(- R2^2^!2^2)   + 2a33a4
2y4 + 2a34"1z4y4] 

,       2   /   •   —33=4 "«   -  °34 +   z[a33z4(- R   -Ha4 
2'    2-a.2-hio2)  + 2a33a4

224 + a34"1(2z42-R2 + a^ 

+ a1 

-1 

./)] 
2-   2-  2-tao2)  +aoaA2(-R2-HiA2-ai2-fa 2)]   • 34    Z4(-R   +84 -ai -«2  '  ^ a33a4   k'-  "4 '"1    "2 +      [a, 

(3.140) 

When  (3.118)   Is used for    x^ + y2 + z2    in  (3.138),   that equation becomes 

quadratic.     This  together with  (3.118),  and  (3.140) are  the  three 

quadratics  for    x  ,  y  ,  and    z  .    Eliminating two variables  produces 

a single polynomial of degree eight.     The  preceding was programmed on 

the  PDP-6  to yield a final polynomial  in    z  .    For the  link parameters 

a  "13   ,  82*15  ,  34=15  ,  several examples were run.    Examples were  found 

in which eight sets of values did indeed satisfy the three quadratics. 

Ohe of these,  generated in the  input angles    9^9°  ,  e2-1750  ,  9^188°, 

94-1730,  95-1740,  96-1690,   led to the  following set of elbow positions: 

X y z 

1 -25.342 11.820 1.048 
2 -24.457 -13.534 1.200 
3 -1.914 -0.569 0.294 
4 -1.919 -0.304 1.307 
5 -1.960 0.399 -0.019 
6 -I.979 -0.168 -0.641 
7 -12.297 0.735 14.985 
8 -18.119 1.073 -14.088 

Now,   in order to extend the above  problem to include    ac^O  ,  we 

must define a new variable 

W xz + yz + z4 
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3. A 6R, a.a^a.a  will have at most 16 different 

positions that the elbow can assume for each fixed 

hand position an^ orientation. 
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We  then replace  the terms     (x2+y2+z2)    with    W    in  (3.105)   (3.111), 

and  (3.112) and appropriately rewrite    UK   .    Equations  (3.105),   (3.111), 

(3.112),  and  (3.141)  become quadratic  in    w ,  x , y  ,  and    z  .    The 

details  of this may be  found in Appendix V.    According to Bezout's 

theorem this system has at most  16  sets  of common roots.    Hovever,  no 

method  is  known by which three  of  the variables may be eliminated  to 

attain one polynooiial of only degree  16. 

To summarize  the above we have found that: 

1. A    6R,  a^s,     may have as many as  four different 

configurations   leading to the same hand position 

and orientation. 

2. A    6R,  8^284    may have as many as eight different 

elbow positions  (the elbow is considered to be the 

point of intersection of axes 3 and 4)   leading to 

the same hand position and orientation. 
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C'lAPTER IV 

NUMERICAL SOLUTIONS 

Our solutions so far have been made possible by the existence of 

special geometry. To analyse more general cases, iterative procedures 

must be used.. Two procedures are presented to handle these cases. 

The first employs the well-known Newton-Raphson technique* and the 

second applies velocity methods. 

4.1 Newton-Raphson 

The Newton-Raphson method assumes the existence of an appro- imate 

solution.  Then the equations are linearised and an increment to this 

approximation is computed hopefully leading to a more accurate approxi- 

mation. We write 

e. -e,  + öe4 (4.1) i  "io r " 1      i - 1 6 

where Pio    is the first approximation, and 6^  is the increment, and 

H  is the more accurate approximation. We may then write (3.4) as 

c^i«+68.)    -8(9, + 60 )cai    srfl   +60)»a.     a cCfl   +öfl )" lo i io I' io        ill       io      i 

a(£i0
+ {M   c(*ir.+ Rflj)«»*  -c'Oi + **)**   « •(A + eej 10        • ••»        i io        i       i       i      io        i 

0 s^ c^ s 

0 0 0 1 
(4i) 

*Thls method was applied to seven link mechanisms with revolute pairs 
by Uicker, Denavit, and Martenberg C49J. The approach presented here 
is similar to theirs. They assumed the motion of one link to be 
prescribed as an input and found the displacement of the rest of the 
mechanism as they incremented the input. 
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Then expanding c{Bj    + 6ß )  and 8(6  + 69 ) , using trigonometric 
io i io i 

identities for the sum of two angles and  letting    0(^)^1    s(68 )=  ^6 
1 i i 

(4.2)  becomes 

cQ,    -s0   cOr 8 0   sa   a c8 
lo        io    i io    i    i    io 

sa        cB   ca -cfl    sa    a 86 
io        io    i io    i    I    io 

0 

0 

sa. ca. 

+     1 

-89      .CQ   ca    cQ    sa    -a so 
io        io    i      io    i      i    io 

c9 
io 

0 

0 

s6   ca   so   sa    a^ce 
io    i      io    i 

0 0 

0 0 

which we write as 

A, - A  + ^H B 
i   io    i io 

iCölo 

0 

1 

(4.3") 

(4.4) 

where A   and B   are defined from (4.3). Using (4.4) in the basic 
io      io 

eqn. (3.A) and retaining only terms of degree one or less in 60 we 

have 

6ei 

+ ft02 

+ 6e4 

6«, 

B10A20A30A40A5öA60) 

A10B20A30A40A50A60) 

A10A20B30A40A50A60) 

A1CA20A30B40A50A60) 

A10A20A30A40B5ÖA60) 

A10A20A30A40A50B6(P"Aeq"A10A20A30A40A50A60 

(4.5) 

The ratrix equation (4.5)  ontains six Independent linear equations 

that may be used to compute se ,0=1 bN .  It is noted that the 
i 

preceding was developed tor revolute joints, but the method is alsr 

applicable to manipulators with prismatic joints provided sprropriate 

changes are made in the B 
io 

This method lends itself to computation on a digital computer. A 

program has been written implementing this scheme.  The inputs to the 
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program are the joint angles of the manipulator In Its Initial state, 

and the desired final hand position and orientation.  The output ifl a 

set of angles leading to the final state.  If the final state Is a great 

deal different from the Initial state, then solutions of (U,5)  will not 

yield "small" corrections and the method will not converge.  In order 

that (4.5) be valid It Is necessary to generate Intermediate 

targets.  The right-hand side of (4.5) represents a translation and a 

rotation.   Intermediate goals are specified by taking a fraction of 

the total rotation and translation.  Thrt program begins with the Initial 

angles as the first approximation.  Then U computes the next approxi- 

mation based on an Intermediate goal.  A new Intermediate goal Is competed 

and the process contlnpes until a satisfactory set of angles Is found or 

the method falls to converge after a fixed number of Iterations.  See 

Appendix I for details. 

4.2 Iterative Velocity Method 

The Iterative velocity method Is based on the fact that a change in 

position and orientation of a rigid body (in this case the hand) can be 

expressed as a screw - a rotation about and a translation along a single 

fixed axis.  In addition, for small motion, it can be shown that the 

screw is related to the angular velocity. 

We write W and V as approximations respectively to the angulai 

velocity of the hand and the linear velocity of a point in the hand at 

*0n the right-hand side of ''4.5), Aeq represents the desired position and 
the product of the six matrices represents the present position.  Hence, 
the difference gives the displacement which may be represented as a 
rotation and a translation. 
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the origin: 

W -^f    n (4.6) 
~     At    " 

V-hA^n-nxr  Acp_       , (^-7) 
At " ' At 

where quantities on the  left-hand  side of  the above are  found  from the 

screw;   A^   is  the amount of rotation,     n    is a unit vector parallel 

to the  screw axis,      '    is  the pitch of the screw,   and    £    is a vector 

from the  origin  to the  screw axis.     The details are  shown  in Appendix II 

In addition we may express  the angular and  linear velocity  as  functions 

of  the rotations  in  the arm  joints. That  is 

6 
W * W (4.8) 

1-1 "l 

6_ 

V = -I>   w    x r (*•') 
-      i.i "i       I 

where W  is the angular velocity of the hand due to the rotation about 

axis  i  and  r  is a vector from the origin of system 1 to axis i. 

We make the approximation 

Ad, 
at - TJ* Hi  (i-l,...,6) (A.10) 

where n^  is a unit «/ector parallel to axis i and we assume that the 

motion of the hand from initial to final position is small, so that 

''A.8) and ^.9) may he written using C4.10) as 

6    A f . 
'4.11) 

(4.12) 

w ■ • 
i-I 

i 

At 
n 
-i 

6 
V ■  -> 

Aüi 

At 
Hi  * li 

n 

ii 

i: 
l; 
■ 

1: 
i 
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Then equating the right hand sides of ''4.11) and ''4.12) to the right- 

hand sides of (4,6) and (4.7), and we obtain two vector equations repre- 

senting six scalar linear equations in  Ac  , i-l,...,6.  Equating and 

dividing by At yields: 

6 
> rA8 n ) - A^n (4.13) 
i-1   1 -1 

6 
-V (Äfl  n x r ) - H A* n - n x r  /yep       (4.14) 
1.1  i ~i  ""i 

The right-hand sides of (4.1) and (4.14) are computed from the known 

changes in position and orientation of the hand.  Since the initial 

configuration of the manipulator is known, we have values for the 

n*  and r  ,  As long as the changes in position and orientation, 

as represented by the screw, are small, then the solution of this set 

of equations gives small changes ir. the joint angles.  Thus the r, 

and the n^  do not change very much arid we are justified in using 

their values in the initial state.  To apply this method we must insure 

that the right-hand sides öf these equations are small.  Therefore, 

for large motions, we take only a portion of the screw to compute 

the incremental change in the angles. We also limit the change that 

is made at each iteration. 

If any of the revolutes are replaced by prismatic Joints, this 

method may still be applied with appropriate changes in (4.11) and 

(4.12). 

A computer program has been written utilizing the above scheme, 

details of which can be found in Appendix II. 

-69- 



ai " a3 ■ a5 ' 9o0 

a2 " % " -90° 

a - 0.375 

83 - 12.2 

a3 - 0.375 

s - 9.5 
5 

and arbitrarily 

a£ - 5.9 6 

V0   • 
the target was generated by the angles 

• - 100°. 8 - 100°, 9 - 30°, e . 30°, 6 . 50°, 8 - 0 . 
1        2 3^56 

This leads to the hand position specified by position vector 

?-2 

27.915 
-0.869 
0,314 
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4.3    Comparison of the Methods 

It was desirable  to test and compare these methods  to determine 

their practicability in  finding solutions  for complex manipulators.     In 

addition it was hoped  that  the velocity met iod would be  faster as it does 

not  require  the matrix multiplication that  the more  conventional 

Newton-Raphson method does.     A 6R, S2a2s3a4    manipulator was used as a 

trial  for the two methods.     For the purpose of testing,   the target hand 

positions were generated by sets of known angles.     Programs were written 

in FORTRAN IV for  the PDP-6.     With  this machine,   an  iteration using 

Newton-Raphson took 0.140  seconds while the velocity method took 0.097 

seconds.    A typical example  is: 

With  the parameters of the arm fixed at 

1. 
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and the orientation (specified by two unit vectors fixed in the hand, 

Lj pointing in the direction of the hand and N  in the direction of 

the sixth revolute axis); 

-0.869 
0.492 
-0.042 

The initial configuration of the arm was 

HjH 
0,314 
0.486 
•0,816 

with 

El 

70°. *- 

14,229 
20.295 
14.141 

60°. \ 

h- 

40°, « 

-0.979 
0-, 196 
0.061 

0, e - 60 , 
0 8 30' 

^1 

-0,105 
•0,220 
■0,970 

The velocity method resulted in: 

9 - 100,00, e - 100.00, 9 

1 2 3 
30 .00, 9^ . 30,00, 9 - 50,00, B 0.00 

27,914 -0.870 0.313 

?-2- 
21,001 
24,863 •   V 0.492 

-0.042 B»- 0.486 
-0.816 

Number of iterations - 10 

Run time - 0.97 seconds 

The Newton-Raphson method resulted in: 

0,  -  100,00    9    -  100,00     9    . 30.02    9    . 30.00    6    - 49,98  ^ - -0.01 1 2 3456 

0.314 
0.486 
•0.816 

Number of iterations -13 

Run time - 1.82 seconds 

From the results of many tests similar to tb^ above the following 

was observed: 

27.914 -0.870 

?-2- 
21.002 
24.862 ±2- 

0.492 
-0.042 Ü2 
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1. For small motions (rotations of about 10 In each Joint) both 

methods converged to solutions but the velocity method generally 

had fewer iterations. 

2. For larger motions (rotations of 10° - 90 in each joint), 

r 
D 
■ 

i: 

n 
1 

Newton-Raphson did not always converge within the upper limit 

of 400 iterations.  The velocity method did in all cases tested. 

3.  For even larger motions, the velocity method did not always 

converge within 400 iterations but did converge in all examples 

when allowed more than 400 iterations.  'lowever, such was not 

the case with Newton-Raphson.  In some examples even after 

4000 iterations, it still did not converge. 

Soth methods become very time consuming whenever the course of the 

solution takes the arm to the equivalent of a "stretched out" position. 

That is whenever the hand is in a position from which it cannot move 

in an arbitrary direction and rotate about an arbitrary axis, the 

system of equations formed in both the above methods degenerates. 

Generally, these methods work their way out of such predicaments by 

taking very small steps, and by benefiting from round-off error inherent 

in the computations.  The further the distance between initial and 

final states, the more degeneracies that are likely to be encountered 

entcute to the final state. 

Even though convergence is occasionally slow, the velocity method 

reached a solution in all cases tested, thereby proving it to be useful 

for complex manipulators.  In particular for a short range of motion it 

was very efficient.  Thus it might be used most effectively to find 

the final set of angles, when a first approximation has been obtiined 

using a rather simplified model of the manipulator. 
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C 'AFTER V 

A DIGITAL MANIPULATOR 

3 1  Description of the Manipulator 

One type of manipulator whose solution doen not fall into the 

class previously discussed is one containing more than six degrees-01 

freedom but having a limited motion in each joint.  An articulated 

arm of this type having many degrees-of-freedom was described by Anderson 

and Mom [37J. They found that such a design was practical for use In 

an underwater laboratory,  In fact, they claim that this design opti- 

mized mary desirable criteria such as slenderness, cost, microdexterlty 

and range of operatlor.. 

If, in addition to restricting the range of freedom at each joint, 

we allow orly a finite number of states to exist at each joint, then the 

arm becomes digital in nature,  This makes it easy to be Interfaced with 

a digital computer.  The concept of such an arm was suggested by 

L, Leifer who together with V. Scheinman developed working models tor 

the Stanford Artificial Intelligence Project Csee Figure 5.1).  Since 

rne arm is S'.ake-llnk in form, they named it the "ORM" Cthe Norwegian 

word tor snake), 

We shall examine the problem of finding a solution for a digital 

arm.  It can be seen that knowledge of the state of each joint together 

with knowledge of the link geometry Is sufficient to specify the position 

of the hand.  The orientation freedom of this device is limited.  In 

practice it would need to have a wrist capable of putting the hand In 
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Figure 5.1.  Working model of the ORM developed at Stanford. 
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the prcper orientation. We, therefore, examine the problem:  given the 

desired position of a point in the hand, to find the state of each joint 

leading to this position. 

Th« problem is divided in two parts.  The first is to consider 

a two-dime<sional arm and develop a technique to solve it.  The second 

is to develop a method for three dimensions with insight gained from 

looking at the two-dimensional problem. 

5.2 Two-Dimensional Model 

The two-dimensional or planar arm to be considered is binary in 

nature.  In other words, there are only two states for each joint.  If 

the arm is made up of n  lli...n, there are  2n possible configurations. 

A model of this arm is shown in Figure 5.2, where the angle between two 

adjacent links can be either +80 or -90 where 9  is a constant. 

MANU 

Figure 5.2. Binary Arm, 

If we number the joints l,....n, and denote the rotation in the t-2 

joint by 9^ ,  i-l,....n,  our problem is to find the 9.  such 

that the end of the final link is  "close" tb the desired target. 

Since there are exactly 2n Possible configurations, there are 

at most  2n points  that  the end of  the arm (the hand)  can 

-75- 



reach.  Thus, In general, the hand cannot be placed at an arbitrary point, 

Hopefully, however, with sufficient links the hand could be placed close 

to any arbitrary point within its workspace. 

There exists a well-defined transformation ''see Appendix III) 

to find the position of the hand, given the 6^ ,  However, the inverse 

problem (i.e., given the hand position, find the associated 3 ) has 

yet to be solved.  Theoretically, we could exhaustively examine the 

2n possibilities construct a table and then choose the one that places 

the hand closest to the target, but in practice this would be too time 

consuming.  We therefore need a systematic method to help in dealing with 

such a large solution space.  If we define the error as the Euclidian 

distance of the hand from the target, the scheme outlined in Figure 5.3 

suggest« Itself. 

5TART        WITK    ARM      iM 

COK»Fl&URATK>J 

l"8 

FINISH 

Figure 5.3. S quential Search Procedure. 

In this method the arm is put initially into some arbitrary con- 

figuration and the position of the hand computed.  Starting at the 
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origin each joint is examined sequentially to see if the other state 

at that joint would reduce the error.  If it does reduce the error, 

the change is made.  That is, the rotation at that joint is considered 

to be reversed and the position of the hand computed while the rest 

of the arm remains rigid.  The state of that joint is then changed 

if necessary to reduce the error.  However, the existence of local 

minima prevent convergence of this method  in many cases.  It is 

possible to get improvement by using look-ahead.  Instead of considering 

changing each joint singly, the results of changing that joint along 

with changes in the next k joints are considered.  This may be 

called k-stage look-ahead, and would involve computing the hand position 

k+1 
2    times for each joint.  There are now many strategies possible using 

combinations of 0,1,2.... - stage look-ahead. There is, oi course, 

a trade-off between the amount of look-ahead and computation time. 

For instance, one strategy was to use no look-ahead until the error 

could not be reduced, then try 1-stage until no improvement resulted 

then 2-stage etc.  The process was halted if the error was sufficiently 

small or the look-ahead became too large (usually 3-stage was as much 

as was allowed). 

For purposes of trying these strategies, an arm with twenty-four 

1 inch links, with possible rotations of -15° in each joint was 

modeled in the computer.  Tests were started with the arm extended 

along the x-axis as shown in Figure 5.4.  The results are presented in 

Table 5.1.  Computation times are shown in Table 5.2. 
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Figure 5.4. The arbitrarily chosen initial starting 
configuration for the arm. 

It can Se seen that no strategy tried was best in all cases.  These 

methods had the  additional disadvantage that the shape of the arm itself 

was not predictable.  It was hoped that improvement would result if the 

searching was started after the hand was put at a point near the target 

by some simple procedure. 

In order to place the hind near the target, a curve connecting 

the origin and the target was generated, whose arc length was equal to 

the length of the arm, and whose curvature did not exceed that which 

the arm could assume.  Curves made up of segments of four circles having 

the above properties were used (details of the derivation of these 

circles are presented in Appendix III), and a rought attempt was made 

to match the arm to this curve.  After the rough curve match, the 

previously described searching technique with 1-stage look-ahead was 

used.  Various curve matching algorithms and different radius circles 

were used.  Some of the results are shown in Figures 5.5 through 5.9. 

Figure 5.5 shows the configuration resulting after four loops with 

no look-ahead, then two loops of 1-stage look-ahead.  The procedure was 

started with the arm aligned along the x-axis as in Figure 5.4. 

Figure 5.6 is the result of first matching the arm to a curve composed 
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of segments of four circles, and then using two loops of 1-stage look- 

ahead. 

Since the arm can tilt  -lb  at each joint and the joints are a 
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fixed distance apart the arm bends In a circle if all the tilts are in 

the same direct .on.  The radius of this circle is the minimum that the 

arm can assume.  In Figure 5.6, the radii of the circles used to generate 

the circle segment curve have this minimum radius.  To match the arm 

to the curve, tHe state of joint  i was chosen so that joint  1+1 

on the arm was as close as possible to point 1+1  on the circle-segment 

curve.  As can be seen, this procedure definitely Influenced the shape 

of the final result.  It may be noted from Figure 5.6, that in the 

attempt to match the arm to the circle-segment curve the arm lagged the 

curve.  One attempt to remedy this, was to use larger radii circles to 

generate the curve.  It can be seen from Figure 5.7 that this improved 

the match. 

To reduce the lag even further, the state at joint  1 was chosen 

so that joint  1+1 was as close as possible to point  i+2 on the curve. 

This appeared successful as can be seen in Figure 5.8.  An attempt to 

match the arm to the curve in both slope and position was made. 

Figure 5.9 shows the results of this scheme.  The arm «omewhat tooK 

on the shape of the curve, but not as much üS in the other schemes. 

The results presented were for the target ^10,10).  However, they 

are similar to those obtained for other targets.  The best results 

were obtained when the radii of the circle segments were larger than 

the minimum.  For radii of too great a magnitude, no curve existed that 
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Figure 5.5, Result of arm after 4 loops of 0 look-ahead and two loops 
of 1-stage look-ahead.  The starting configuration was 
along the x-axls, as in Fig. 5.4. 
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10- Target     (10,10)^0 

0            ^s^^^^^ 
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0 0 Points  on curve made up or  tour                     V                    X 

circles                                                               0     \^                  \ 
Arm after   simple attempt  to match                        li                   \ 

curve                                                                          0     ^Nt              \ 
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1 J. Position of arm after  two  loops of                                  \^          ) ^^■^ ̂ ■■^T 
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Figure 5.6. Result of trying to match arm to curve made up of segments 
of four circles, and the improvement after two loops of 
1-stage look-ahead.  Radii of circles is equal to minimum 
radius that the arm can assume.  The curve matching tech- 
nique was to choose 0; so that point i+1 on the arm was 
as close as possible to point i+1 on the curve. 
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0   0 Points on curve made jp of four 
circles 

II   M   Arm after simple attempt to match 
curve 

-f Improvement after two loops of 
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D 

Figure 5.7. Similar strategy to that in Fig. 5.6.  In this case the 
radii of the circles Is 1.2 times the minimum radius that 
the arm could assume. 
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Figure 5.8.  Result of trying to match arm to curve made up of segments 
of four circles, and Improvement after two loops of 1-stage 
look-ahead.  Radii of circles Is 1.2 times minimum that 
arm can assume.  The curve matching technique used was to 
sequentially choose 9i so that point 1+1 on the arm was as 
close as possible to point 1+2 on the curve. 
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Figure 5.9. Result of trying to match arm to curve made up of segments 
of four circles, and improvement after two loops of 1-stage 
look-ahead.  Radii of circles is equal to minimum radius 
arm can assume.  The matching technique was to sequentially 
choose ^»0 thmtfi^-J^J+^-^sglj^^CJ^U]   was 
a minimum, where (x,.,/,.') is the coordinate of joint i on 
the arm and (,*i . yj is the coordinate of point i on the 
curve.  This matching criteria puts a weight on the slope as 
well as the position of the links. 
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could connect the origin and the target point.  A value of 1,2 times 

the minimum seems to be about optimum. It was found that this allows 

for a measure of control over the final shape of the arm as well as 

generally reducing the position error. 

5.3 Three-Dimensional Model 

This arm is similar to its 2-dimensional counterpart.  The differ- 

ence is that two axes of rotation exist at each joint.  The axes inter- 

sect and are 90° apart.  (See Figure 5.10.)  We assume our model to be 

constructed so that eight states are allowed at each 

Axis l 

AXIS 2 

Figure 5.10. Typical joint in 3-dimensional digital arm. 

joint.  These are:  either a rotation of f6  about axis 1 with none 
- o 

about axis 2, or a rotation of  -to  about axis 2 with none about 
o 

axis 1, or rotations about each such that the net result is a rotati 

-^H  about axes midway between axes 1 and 2.  Thus, two links can be 
o 

tilted with respect to one another  t8  about 4 different axes that are 

45 apart.  If we denote the rotation about axis 1 as  Ö and the rota- 

tion aoout axis 2 as V , then the possible states are: 

on 
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2 -e 
o 0 

3 0 
o 

4 0 "Bo 

5 +tan     (—tan 6o> ain'^-fsinÖ ) 
42        0 

6 'l    1 
+tan    (—tan 

</2 
9o> 

-sin-^sme^ 

7 -tan^ci-tan 
>/2 ».> -8in_1(-l-8in9 ) 

8 -tan'   (-l-t«n 9o> 
+8in"1c4-8ln9 ) 

v/2         o 

where the values of  6 and cp in states 5-8 are the actual rotations 

about axes 1 and 2, leading to equivalent tilts about axes at 45° 

to 1 and 2 (see Appendix III).  An n-link arm wouJd then have 8 

possible configurations.  Again there is a well-defined transformation 

to find the position of the hand given the angles (See Appendix III) 

but no such transformation exists to find the angles given the hand 

position. 

The procedure presented in Figure 5.3 is still applicable except 

8 states exist at each joint.  Then each joint wouH be examined 

sequentially and the state at that joint is chosen which minimizes 

the Euclidian distance of the hand from the target. With k-stage 

look-ahead variations in the joint under consideration plus all 

possible ccmbinations of the next k are considered.  Then only the 

joint under consideration is moved.  The position cf the hand must thus 

k+1 
be computed 8    times for each joint and the time involved in these 

computations will limit the amount of possible look-ahead. 
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An arm with 24 l-inch links and possible tilt of *15 between each 

link, was modeled In the computer.  The arm was placed initially in 

the configuration of Figure 5.3 and strategies involving combinations 

of no look-ahead and 1-stage look-ahead were tried. Results are presented 

in Table 5.3.  Computation time for one loop of sequential search is 

shown in Table 5.4.  Details of the algorithms used are in Appendix III. 

In general, the results are encouraging.  It seems that this 

approach works better in three-dimension than in two as the errors 

are lower.  The reason for the Improved behavior can be attributed to 

the additional possible states at each Joint.  Computation time is 

longer in three dimensions, limiting look-ahead to one stage if real 

time problems are to be undertaken by the arm. 

', 
5.4 Discussion 

Many variations of the aforementioned strategies are possible. 

For example, one may start sequential searching and making moves at 

the hand then work toward the origin.  It is also possible to find 

the joint at which a change would reduce the error by the largest 

amount, make this change, and then continue  the process of changing 

the joint that makes maximum reduction in error. 

A reason for starting at the origin and working toward the hand 

is that in general a fixed rotation near the origin will cause the 

greatest deflection of the hand.  Thus, in many cases making a change 

near the origin turns out to be the change that makes the maximum 

reduction in error. 

Another approach is to take two joints at random and consider 

the result of simultaneous changes in each.  The two-dimensional 
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volume of 5x10  cubic Inches and  10   reachable points exist, thun 
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curve matching scheme could be extended to threc-dlmenslons to give the 

arm a better starting configuration. It might be possible to break the 

spatial problems down Into planar problems. Another Idea Is to divide 

space up Into several regions, store a configuration that places the 

hand In each and then Initially start the hand In the region closest 

to the target. 

Many strategies are possible, none clearly better than others. 

Perhaps further study would show that certain ones work better In certain 

areas of space.  It then might be possible for the computer to learn 

which was best for a particular region. 

Different error criteria might be better.  Cartesian coordinates, 

with the base of the arm aligned along the x-axls were used.  This might 

mean that error In the x-dlrectlon should be weighted differently than 

error In the y- or «-direction.  Perhaps the arm can better reduce angu- 

lar error than radial error and this should be taken Into account. Again 

learning might be applicable In selecting one error criteria for a given 

region or for optimizing weights placed on different quantities In an 

error function which Is to be minimized. 

(i 
In order that this arm be useful, the points In the reachable space 

must be close together.  With a 24 link arm, there are 8  (approximately 

21 
10  ) possible configurations.  There will be fewer reachable points than 

24 
configurations, but reducing 8   by a factor of 10 or 100 or 1000 1. 

;: 

. 

i: 
still leaves a large number of points.  Near the boundary of reachable 

space, the points will be further apart, but In the Interior, the 

density whould be very high.  Assuming that a 24 link arm has a working 
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the average density is  2x10   points per cubic inch, or if the points 

were equally spaced, they could be 0.00004 inches apart.  This leads 

one to believe reachable points should be close enougli to any arbitrary 

point in the space.  The problem, of course, is to find the configura- 

tion that leads to a position near a desired point. 

The results indicate that it is possible to find a solution for 

this digital manipulator.  The solutions obtained are far from optimal 

but close enough to be useful.  The dimensionality of the problem is 

staggering at limes, but it is in fact the large number of solutions 

that give hope for any sub-optimal technique. 

Further improvement is possible.   liv streamlining the subroutines 

used for basic computations, computer time could be reduced.  The 

incorporation of different strategies for different zones would be 

useful. 

Although the problem of finding a set of angles to place the hand 

at a given target appears soluble, the arm itself has serious limitations. 

The primary drawback is the inability to control its motion.  Since 

there are discrete states at each joint, a wild motion is likely as 

each change is made.  That is, the position is undefined when motion 

occurs.  In addition, positions close in spac may be very different in 

arm configuration.  In conclusion, the arm is interesting but in its 

present state has no immediate usefulness. 

•91- 

!' 



B~ 

I 

BLANK PAGE 



11 

0 
; 

:; 

n 

; 

u 
i: 

D 
:. 

D 
D 
i! 

CHAPTER VI 

TRAJECTORY GENERATION 

6.1  Problem Statement 

In remote manipulation a typical problem is to move from an initial 

configuration to some new position and then to grasp an object.  In 

order to carry out this task, the position problem must be solved.  This 

results in a set of values specifying how much to rotate each joint in 

order to move the manipulator from its current or initial configuration 

>o the desired final state.  However, in such a case no explicit infor- 

mation exists describing the intermediate states between the initial and 

final position.  It should be noted that the initial and the final 

configurations may be physically far apart, and the s, ace through which 

the manipulator must move to attain the final state will in general 

contain obstacles.  It is therefore necessary to find a "path" along 

which the manipulator can move and not collide with any of the obstacles. 

This problem will be referred to as trajectory generation.  We attempt 

to solve this by defining sets of intermediate values for the joint 

anglet; which lead the manipulator to the final state in a manner which 

avoids collisions. 

A person performing manipulative tasks avoids obstacles very simply. 

His eyes observe a possible conflict and he knows intuitively to raise 

his (   bow or change his direction slightly. He sees "the world" in 

which he is working.  He knows immediately which objects he is likely to 

encounter and which he will not come near.  For a computer controlled 
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manipulator  the problem is not  so simple.     The  problems  of "world" 

modeling,    conflict detection,  and collision avoidance must all be fa(..>d 

in order to generate a  trajectory between initial and final manipulator 

configurations. 

As a first step  in dealing with this very difficult problem,  a set 

of  routines have been developed that provide a mathematical description 

of  the world.     Other  routines  simulate proposed  trajectories  through 

the  space and sequentially examine points along the  trajectory for 

obstacle conflict.     If conflict  is detected  these routines  suitably 

modify the  trajectory.     Several basic strategies  to get  from the  initial 

to the  final position are  programmed so that  if one  fails,  another can 

be  explored.    A block diagram of  this  system is  shown  in Figure 6.1. 

In the development  of  these routines,  an attempt has been made  to 

be as general as possible  in order that  the programs be applicable  to 

any manipulator,  performing a wide variety of  tasks.     In the next 

sections,  we present a  description of  these  routines. 

6.2    World Model,   Obstacle  Description,  and Conflict  Detection 

For  this  system a  simple model of  the  "world"  is used.    The basic 

elements of the world are  assumed to be:     planes,   spheres and cylinders. 

It  is assumed that all  objects  of interest  can be modeled    with  these 

elements. 

The boundaries of the workspace, usually formed by table tops or 

walls, are modeltd as infinite planes. These planes are represented by 

a unit vector, b, and by scalar t. Vector b is normal to the plane and 

points inward toward the workspace. Scalar t, the distance of the plane 

from the origin, is measured in the b - direction. 
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Simple,   somewhat regular objects which are not planar  or cylindrical 

in shape are modeled     as  the smallest  sphere     that circumscribes  the 

object.    A typical  object modeled    in this manner might be a  cube,  a 

pencil sharpener  or  a  coffee cup.     The assumption is made  that all  such 

objects are supported by an infinite plane.     Thus we represent a sphere 

by a, a vector describing the  location of its center,  b, a unit vector 

from the direction of support, and t,   the radius of the sphere. 

Cylinders are used to model objects containing a predominant axis 

such as a  tower.     In addition,  cylinders  are  building blocks  for more 

complex objects.     For  example,  a manipulator  is modeled    as a group  of 

cylinders  each  of which corresponds  to one  of  the manipulator's 

structural members.     The assumption is made  that all cylinders are 

supported from an infinite plane or from another cylinder.    We then 

represent a cylinder by a  line segment corresponding to its axis and by 

the maximum distance  of points  in the  object  from this  line,   d.     We have 

then: 

b:    a unit vector parallel to the axis pointing away 

from the direction of support 

a:     a vector describing  the position of the base of 

the axis 

t:     the  length of the axis 

d:     the radius of the cylinder 

With this representation it is convenient to consider the cylinders  to 

have a hemisphere capped on each end thereby assuring that all points  on 

the  surface have  the  same minimum distance,   d  from the  line  segment 

representing the axis. 
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Each obstacle,   then,  has a  list of properties which include  its 

type  (plane,   sphere,   or cylinder),  the composite  object to which  it 

belongs, and the aforementioned parameters which are required for  its 

quantitative representation.    The interpretation of a,  b,  t and d is 

varied according to  the  type  of the object.     Such models of all  objects 

considered to be  obstacles  to the manipulator are  stored in the computer. 

The process  of conflict detection consists  of determining  if  the 

manipulator and  the  objects  in its workspace will  be brought  to  the  same 

place at  the  same  time.     This  is accomplished by computing the distance 

between the elements  of  the manipulator and  the  elements  of the work- 

space at various  positions along the proposed  trajectory.    A conflict 

is  then predicted  if  this  distance becomes  too small. 

It  is undesirable  to compute  the distance  between the manipulator 

and all  of  the  objects  in  the workspace.     To consider all  the  objects at 

each position along the  trajectory would be time consuming.     In addition, 

much  of this  computation would be wasted as  for an arbitrary position, 

the manipulator would be so far from a  large number of objects that a 

collision with  these would be very unlikely.     We would thus  like  to 

consider only objects near the manipulator.     For  this reason we divide 

the reachable space of  the manipulator into small regions.     In all  the 

i-i work to date,   sixty-four  subdivisions have been used.     The workspace  is 

considered to be a rectangular parallelapiped with edges parallel to 

the axes of a  fixed Cartesian coordinate system.     The small regions are 

defined as  the volumes between three sets  of equally spaced planes  parallel 

to each of three mutually orthogonal faces of the workspace.    Then a  list 

of objects completely or  partially inside each region is associated with 
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that region.  For conflict detection, only the objects occupying the same 

region or regions as the manipulator are considered. 

As a result ot dividing the space into regions, we have the problem 

of finding in which region(s) various obstacles are located.  In addition 

we will have to identify the region(s) the manipulator occupies at various 

positions along its trajectory.  We wish to keep this analysis simple in 

order that the time saved in not having to deal with all obstacles in 

the workspace is not lost in trying to locate the manipulator in various 

regions.  Since the faces of our subdivisions are made perpendicular to 

the coordinate axes, we can easily eliminate many regions by comparing 

the minimum and maximum coordinates (x, y, z) of an obstacle, with the 

coordinate boundaries of the regions.  To find in which of the remaining 

regions an obstacle lies we compute the distance from the center of each 

of the regions to the obstacle (a fairly simple process in view of the 

simple world model).  We thencompare this distance with the radius of 

a sphere totally enclosing the region to determine if the object is in 

the sphere.  If the object is in the sphere, we assume it to be in the 

region.  This procedure may cause an object to be considered inside a 

region when in reality it is outside.  However, this process is con- 

siderably simpler than trying to find whether an object cuts any part 

of the actual region. 

Routines were developed which divide space into regions and 

appropriately enter or remove objects from lists associated with the 

regions.  These routines also store the properties of each obstacle. 

The conflict detection routine starts with the first link of the 

manipulator and finds which regions this link is in.  It then finds the 
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distances between all the objects in these regions and the link.  A 

collision is predicted if the distance between any object and the link 

is small enough so that, with the link continuing along its present 

course, a conflict would occur.  If a collision is predicted, a flag is 

set and the routine specifics the obstacle and the link closest to the 

obstacle.  It no collision is detected the procedure is carried out for 

the remaining links in the manipulator.  A block diagram of this program 

is presented in Figure 6.2. 

The method for determining distance between a manipulator link and 

an object depends upon the type of object.  For spherical objects, the 

distance between the sphere center and the cylinder-axis of the link is 

computed.  The actual distance is then found by decreasing this by the 

sum of the radii of the sphere and the cylinder (representing the link). 

For planes, the distance between the plane and the cylinder-axis of the 

link is computed.  This distance is decreased by the radius of the 

cylinder to form the actual distance.  For objects modeled as cylinders, 

we find the distance between the object axis and link axis, and decrease 

this by the combined radii of the cylinders.  Details of these calculations 

are found in Appendix IV. 

6.3 Trajectory Generation and Obstacle Avoidance 

We have the problem of finding a series of closely spaced inter- 

mediate positions connecting initial and final states.  These represent 

a trajectory that the manipulator can follow while avoiding all obstacles 

in the workspace.  The approach used is to start by choosing a plausible 

trajectory, simulate the motion along the trajectory and then if conflict 
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Figure  6.2.     Block diagram for conflict detection  routine, 
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occurs, to modify the trajectory.  This modification is made on the basis 

of local geometric conditions in the area of conflict.  (A program, 

called AVOID, accomplishing this will be discussed in more detail later 

in this section.) 

Often if more than one obstacle is present, a move that appears 

good to avoid one obstacle is bad to avoid another.  This may lead the 

manipulator to oscillate between objects.  It is also possible for somf 

joints to be at their physical limits so that the avoidance routine does 

not find a good move. Finally, the avoidance routine itself may come up 

with a non-productive move.  It is therefore necessary to continually 

ascertain whether or not progress is being made toward the goal.  If no 

progress is being made, it is then necessary to decide whether a slight 

change in strategy is sufficient or whether a whole new strategy is in 

order. 

A program based on the above approach called TRLTRJ, has been 

written.  The inputs to the program are two sets of joint angles, one 

set specifying the initial position and the other specifying the final 

position.  In addition the desired increment between intermediate 

positions is specified. The output from the program is an array of 

angles specifying the intermediate positions. 

Four basic strategies are built into the program.  The first, and 

least complex, just increments each angle towards the final goal.  The 

second strategy computes two intermediate positions to move the '.ianipu- 

lator up and then over a concentration of obstacles.  The third and 

fourth strategies both try to fold the manipulator to shorten it and then 

move it in front of any obstacles.  These last two differ in that one 
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shortens  the manipulator  by moving  Joints  in one  direction  toward  the 

physical  stops while  the  other  folds  the manipulator  by moving the  joints 

toward  the  stops  in the  other  direction  (in the  program,  we  call  these 

directions  positive and negative,   respectively). 

The  program starts by  trying  the  first  strategy.      If any obstacle 

is  encountered,   this  strategy  is  abandoned for  the  time  being and the 

second  strategy started.     If while  pursuing this  second basic strategy, 

a  conflict  is predicted,  an attempt  is made  to modify  the  trajectory 

using  the  program AVOID.     If   "his  strategy fails after using AVOID the  program 

continues and tries  the  third and  finally,   if necessary,   the   "our  strategy 

in a  similar manner.     If the   fourth strategy fails,   the  program returns  to 

the   first  strategy and  tries   it  using AVOID.     If  it  does  not  produce a 

trajectory,   it  is assumed  that  all  obstacle avoidance  strategies have 

failed and  the  program halts. 

If any of  the  following  occur,   the program considers  that no progress 

is  being made and hence a  strategy has  failed: 

1. The avoidance routine   (AVOID)  is not able  to generate a 

move due  to joints  being at  their physical  stops. 

2. A collision is  predicted with the manipulator at  the  same 

point on the  trajectory where a conflict had  previously 

been predicted with  that  same obstacle   (hence  it  is 

assumed the program is  in a   loop). 

3. A conflict  is  predicted with a  plane  for  the  second 

time,  while  trying  to avoid  the  same  obstacle. 

(Assumedly we cannot  get around the obstacle.) 
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The manipulator oscillates between two obstacles, and no 

net progress toward a goal is being made. 

More than 200 Intermediate sets of angles have been 

selected without the manipulator reaching a goal. 

More than 350 intermediate sets of angles have been 

explored. 

The following conditions cause a slight change in strategy but do 

not cause the strategy to be abandoned. 

1. A plane of infinite extent is encountered while trying 

11 to avoid an obstacle. At this point we assume that 

the manipulator it moving in the wrong direction to go 

around this obstacle.  The strategy is to go back to the 

first point we encountered this obstacle and try to go 

around it by going in the opposite direction.  (This 

notion of direction will become more clear with the 

description of AVOID.) 

2. An oscillation of the manipulator between two obstacles 

is detected.  The action that the program takes is to 

go back to the point where the second of the obstacles 

was encountered and try to go around it in the opposite 

direction.  If this happens twice at the same position 

on the trajectory, it is assumed that no progress is 

being made and the strategy has failed. 

A block diagram of TRLTRJ is presented in Figure 6.3. 

The subroutine AVOID is used to generate small perterbations in a 

trajectory when conflict is predicted. The program attempts to define 
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Figure  6.3.     Block  diagram of  fklTRJ 
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a "gool" direction and a "bad" direction.  It then tries to move the 

link for which a collision has been predicted as much as possible in the 

good direction while not moving in the bad direction.  This is accomplished 
1 

by defining small changes in the Joint angles of all the links between the 

base and the "colliding" link.  Ideally these angle changes are chosen so 

that the link will have a large velocity component in the good direction 

and zero component in the bad direction.  If the link does not have enough 

freedom (i.e., there are too few joints preceding the link or the joints 

are at their physical stops) to make a move in this manner, an attempt 

is nude to move in the negative bad-direction.  If this too is not 

possible then no move is made and a flag is set indicating that the 

strategy has failed. 

The underlying idea used in choosing a good direction is that all 

obstacles are supported by either an infinite plane or another obstacle. 

Then if an obstacle lies between the manipulator and the target, one 

could eventually get around the obstacle by moving away from the direction 

of support.  In addition an attempt is made to move in the general 

direction of the target.  This target will normally be the final position 

but may be an intermediate goal generated in a strategy of TRLTRJ.  If 

the predicted^conflict has occurred in the process of avoiding a different 

obstacle, the target becomes the position generated by AVOID when the 

manipulator encountered the first obstacle. The good direction is chosen 

taking into account the type of obsta > and the relation between link, 

obstacle and targe«- as follows; 

If the obstacle is a plane or a sphere, the good direction is 

specified by a vector from the point of conflict on the link to the same 

n 
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n 

D 
0 

D 
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0 
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point on the link with the manipulator at the target position.  (The 

assumption here is that the sphere is relatively small and lies on the 

plane of support.) 

If the obstacle is a cylinder, then the process is a bit more 

complicated.  Recall that a cylinder may be part of a more complex 

obstacle (for example the towers in Figure 6.4).  If no other part of 

the possibly complex obstacle, of which the cylindrical obstacle is a 

member has been recently encountered, then the good direction is: 

1. The direction of the axis of cylinder, if the 

obstacle appears* to be between th^ manipulator and 

the target. 

2. The vector sum of unit vectors in the axis direction 

and the direction the link must move to get to the 

target, if the "ink is above the cylinder. 

3. The direction the link must move to get to the 

target, if obstacle is not between the manipulator 

and the target. 

When the cylindrical obstacle is part of a more complex obstacle 

and when an element of this complex obstacle has  been previously en- 

countered, then the good direction is similar to the above with the 

following exception:  the positive axis direction is replaced by the 

negative axis direction whenever the point of conflict on the obstacle 

is nearer the far end of the obstacle (i.e., away from the point of 

*We say "appears" because a cylindrical object may not itself be between 
the manipulator and the goal, but the complex obstacle which it belongs 
to, may indeed be between the manipulator and the goal. 
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i 
(a) simple tower (b) Y-shaped tower 

! 

ii 

Figure  6.4, Towers used as  obstacles.     (a)  mcdel  is a  single cylinder 
(b)  and   (c)  are  each modeled    with  three cylinders. 
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support).  In this way we are able to follow the contour of a complex 

obstacle. 

Once a good direction has been established for an obstacle it 

remains the same until: 

1. The manipulator is clear of the obstacles, or 

2. An oscillation has been detected;by TRLTRJ, in 

which case wherever the positive axis direction 

was to be used, it is to be replaced by the negative 

axis direction and vice-versa. 

The bad direction is always specified by a vector from the link to 

the obstacle, along the line defining the minimum distance between them. 

A block diagram of AVOID is presented in Figure 6.5. 

6.4 A Test of the Program 

The trajectory generating routines were tested by incorporating 

them into the block stacking program developed at the Stanford 

Artificial Intelligence Project L25J.  The block stacking program 

represents current research work in hand-eye systems.  An electric 

motor driven manipulator of type 6R, So a^ s^ a,- (see Figure 6.6) and 

a vidicon T.V., interfaced with the PDP-6 computer form the basic system. 

Programs written by Singer and Pingle [25J enable the manipulator to pick 

up blocks from a table and build block towers.  The blocks are originally 

placed at random on the table but within view of the vidicon. A block 

is then located on the table by appropriate analysis of the T.V. picture. 

Next, the manipulator moves to grasp the block and then places it to 

build a tower.  A new block is found and the process continues. 
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Figure 6,5.  Block diagram of AVOID. 
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Figure 6.6.  Electric Arm at Stanford Artificial Intelligence Project. 
A prothef tic arm originally built at Rancho Los Amigos 
Hospital, this arm has been modified for use In hand-eye 
research. 
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The trajectory generating routine is used to find trajectories when- 

ever the arm is moved except in the last stages of actually picking up 

or setting down a block. At these times, the manipulator control is 

transferred to a special routine whose function is to lower or raise the 

hand along a specified path with a specified orientation. 

Objects considered to be obstacles are the table top, the support 

structure for the arm, and any block towers that have been built.  In 

addition, to make life difficult for the program, several other obstacles 

(see Figure 6.4) were added. Since the range of vision of the T.V. 

camera is small, and its recognition powers to date is limited to cubes, 

a sub-program was written so that the external obstacles could be added 

to the data structure by commands from the teletype. 

After allowing the program to run, with the different obstacles in 

varying locations, the trajectory generation program was seen to perform 

fairly well (see Figure 6.7). Where possible, it was generally able to 

go over or in front of the obstacles.  However, the procedure occasionally 

failed when the manipulator wrs started in a configuration in which joints 

were near their physical stops.  In these cases a successful maneuver 

might have been to move thosf joints well away from the stops and trv 

again (a procedure not built into the program).  In addition, if the 

objects were so placed that the arm could only get through by going 

between two objects, failure generally occurred. 

Whenever more than one or two strategies were tried, the computation 

might run upwards of 20 seconds.  However, most manipulative scenes are 

fairly static, so that once a trajectory had been found through a given 

set of obstacles, it could be used repeatedly.  This process would save 
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Figure 6.7.  Example of trajectory enabling manipulator to go over 
obstacles. 
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having to re-analyze the trajectory for every move, thus conserving 

computer time.  In addition we could move backward on the same trajectory 

to get back through the space again. 

With this program we have attacked the problem of moving a multi- 

link manipulator through a space composed of three-dimensional objects. 

Had we been concerned with having Just the hand avoid obstacles on a 

plane, the problem would have been much less complex, as the hand could 

be made to follow an arbitrary curve.  Such is not the case, when 

considering a conflict with all links of a manipulator.  We cannot inde- 

pendently specify the position of each link of a six degree-of-freedom 

manipulator.  There are just not enough freedoms.  However, the programs 

developed above do enable us to deal with the problem of conflict for a 

general multi-link manipulator.  These programs perform the basic 

function of allowing a manipulator to perform tasks in the presence of 

obstacles. 
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*The iterative technique may however be used to good advantage when the 
distance between positions is very small.  Then the iterations converge 
quickly, and there is only one solution being sought. 

CHAPTER VII 

CRITERIA  IN THE  DESIGN 
OF A MANIPULATOR FOR COMPUTER  CONTROL 

7.1  Kinematic Criteria 

As mentioned earlier, a manipulator needs to have six degrees-of- 

freedom to grasp a rigid body with a specified orientation at a specified 

position in space.  In addition, the kinematic solution must be easily 

programmed and solved.  This indicates the desirability of a closed-form 

solution rather than iterative techniques. The closed-form solutions 

are faster and find all configurations leading to the desired terminal 

position and orientation while iterative techniques find only one.* 

In fact, the iterative schemes may not find a solution even though 

several may exist. The question of the existence of a solution is 

importdnt, as this existence indicates whether a given position and 

orientation is physically attainable.  It is desirable to have solutions 

exist throughout th^ workspace or at least know where they do not exist. 

Thus a factor in the design of a manipulator is the zones in which the 

terminal device can be placed in an arbitrary manner. 

The problem of zones is closely allied to that of solutions.  The 

existence of a solution for a given position and orientation automatically 

guarantees that that point is within the zone of reachable points.  One 

method of investigating zones would be to solve the position problem for 
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many points and many manipulator configurations.  This however Is very 

lengthy and not at all general. Alternatively, we attempt to give a few 

general remarks about zones. 

When on the boundary of the zone of reachable space, the hand 

cannot be moved In an arbitrary direction or rotated about an arbitrary 

axis. Another way of saying this Is that the hand cannot move along an 

arbitrary screw.  Mathematically this happens' whenever the determinant 

formed from the left-hand sides of equations (4.13) and (4.14) vanishes. 

The existence of a solution would enable us to express the W  and r  , 

appearing In (4.13) and (4.14), In terms of the hand position and 

orientation. Then forming the determinant we would have a polynomial in 

terms of the hand position and orientation whose vanishing would correspond 

to the boundary of reachable space. We .rould then have a surface in 

six-space which bounds reachable space. 

As this representation is highly non-linear, as well as dependent 

upon the existence of a solution, it is often more fruitful to examine 

the problem from a geometrical viewpoint. For example, consider the 

611,8381; manipulator with all adjacent pairs of axes perpendicular, as 

is shown in Figure 7.1. We note that the wrist point, W , defined by 

the vector P , can lie anywhere within a sphere of radius r about the 

shoulder point,  0 , where. 

(83-«5)2^ r2^ (^^j)2 (7.1) 

Furthermore, if the wrist position is fixed, then the direction the 

hand points, defined by a^ in Figure 7.1, is arbitrary. Through 

appropriate rotations in joints 3 and 6, a6 can be made to point in 

any direction. However, the total orientation of the hand cannot be 
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arbitrarily specified for a fixed wrist point as tha direction defined 

by aig In Figure 7.1 is limited in range.  We note that ^ must 

always be perpendicular to mg .  Hence, ^ may lie anywhere in a 

plane perpendicular to ^ .  Now the specification of the wrist 

point does not fix the elbow point, A, and in fact the triangle QAW may 

be rotated about P .  We observe, then, that (V, must lie on a cone 

whose axis is P , with apex at W and whose cone angle is fixed by 

triangle QAW. Then *  will lie in planes through W , perpendicular 
6 

to the elements of this cone. This defines a second cone, inside which 

^,  can never point.  These cones are shown in Figure 7.2. Referring to 

Figure 7.2, the elements of cone 1 form the locus of w  while *»  will —3        o 

always lie outside cone 2. 

If it is desirable for the hand to have a full range of orientation 

freedom, then a manipulator whose, last three Joints are revolute and 

whose axes intersect is appropriate.  Consider such a configuration, 

shown in Figure 3.8.  Here the last three axes intersect and provide 

maximum orientation freedom for the hand.  In addition this configuration 

has a wide range of positions that the wrist point, defined by P-j , 

can assume. Referring to Figure 3.8 we note that the wrist point can be 

placed anywhere Inside a circle normal to axis 2, about ?■,   , whose radius 

r obeys the constraint: 

(a2-s4)
2 ^ r2< (a2+s4)

2 (7.2) 

Rotation of the first Joint then rotates this circular anulus to generate 

a torus which is the locus of points the wrist can reach. 

It is possible to examine many manipulator configurations in this 

manner. Table 7.1 presents the results of such examination of 6R manipu- 

lators with two and three non-zero link parameters.  Whether or not a 

solution exists is also included in Table 7.1. 
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Figure     7.1.     A    6R,8-S    manipulator 

CONE   2 

Figure    7.2.     Cones showing possible  loci  for bJ»   and <i?c 
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TABLE  7.1 

Solubility and Orientation Restrictions  in 6JV Manipulatoru 

o 
D 
D 
i; 

fi 

[i 

o 
0 
I! 
D 

MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK 

1  a182 D 16.  8283 D 31.  84a4 D 

2. a^j D 17. a2a3 S G 32.  S4S5 D 

3. a s 
1 3 

D 18. 3284 S G 33.  s4a5 D 

4. .j.3 S G 19. a2a4 N R 34. a4s5 D 

5- al84 
S G 20. 8285 S R 35.  a4a5 D 

6. a^ S G 21. 8285 S R 36.  s5a5 D 

7. a1s5 D 22.  8383 D 37. 8^8282 D 

8. a^ D 23.  S3S4 S G 38.  ais2s3 D 

9. 8282 D 24. 8384 S G 39.  a^a-j S G 

10. 8280 P 25. 8385 S R 40. a1S284 S G 

LI. B2&2 S G 26.  8383 S R 41.  a182a4 S G 

12.  8284 S G 27. 8384 D 42.  8^285 D 

13. 82»^ S G 28. 8384 S G 43. V2«3 D 

14. 828c D 29. a385 S R 44. aia2s3 D 

15. 82a5 D 30. a3a5 S R 45.  a.a2a.i S G 
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Table  7.1  (continued) 

MANIPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK 

Ub.     a1a2«4 S G 63.  a,a.ar 14 5 
S R 80.  S28484 S G 

U7.    a1a2a4 N R 64. a^s5ac D 81.  3284s5 S G 

U8.     0^2^^ S R 65.  828283 S G 82.  8284r5 S R 

U9.     a-^a^a^ S G 66.  s^a^a-i S G 83. 82a485 S G 

50.  a183a3 S G 67.  828284 S G 84. 82a4a5 S R 

51. a183s4 S G 68.  828284 N R 85. 8^8,. D 

52. a183a4 N G 69.  s2a2s5 S R 86.  828383 S G 

53.  a]S3S5 S R 70.   828283 S R 87.  82S384 S G 

54.  a183«5 S R 71.  8^383 S G 88.  328-58/ N G 

55. a1a384 S G 72.  828384 S G 89.  828383 S R 

56. a1a3a4 N R 73. 82S384 N R 90.  828383 S R 

57.  a^aßSr, N R 74.  8^38- S R 91.  a28384 S G 

58. a.a^a. N R 75.  8^385 S R 92. a2a3a4 N R 

59.  a,s.a. 
14 4 

S G 76.  82a384 S G 93.  a2a3s5 N R 

bO. a.8.sc 14 5 
S R 77.  8283a4 N R 94.  828383 N R 

u.  .lV3 S R 78.  82a3s5 N R 95.  828484 N R 

it,    «l-485 S R 79.  828385 N R 96.  828483 N R 
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Table 7.1  (continued) 

MANIPULATOR REMARK MANIPUIATOR REMARK MANIPULATOR REMARK 

97.     a  sa 
2 4 5 

N R 
1 

, /5.   838484 S G 113.   838433 S R 

98.     a2a485 N R 106,   S38485 S R 114.   838^5 S R 

99.     a2a4a5 N R 107.   83.S485 S R 115. 338483 S R 

100.  ajSjaj S R 108.   838485 S k 116.  838383 S R 

101.   83a3S4 S G 109.   838485 S R 117.   8^8485 D 

102.   83838^ S G 110.   838383 S R 118.   8^483 D 

103.   838383 S R 111.  838483 S G 119.   848583 D 

104.   838383 S  R 112.  83S4S3 S  R 120.    848585 D 

Key to Remarks:  D - degenerate 
S - Soluble 
N - Insoluble 

R - Restricted orientation for 
reachable wrist positions 

G - No orientation restriction 
for reachable wrist positions 
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7.2 Additional Considerations 

Aside from kinematic considerations, there are many less objective 

criteria In choosing a manipulator for use with a computer system. For 

the iahe of completeness we mention some of these additional considerations, 

and give a few remarks about several of the more Important ones. 

1. Ease of Interface with a Digital Computer. 

The actuators of a manipulator must be such that their 

control may be easily assumed by a digital computer. 

In addition position feedback must be available. 

This will generally be from potentiometer or shaft 

encoders. 

2. Power Source. 

Manipulators are in general electrically, hydraulically, or 

pneumatically powered. Electricity is universally available 

and inexpensive.  Hydraulic power provides the means for 

converting a large amount ot energy to motion with a 

minimum of weight, thus an advantage where speed is 

required.  Pneumatically powered manipulators, working 

off of air, are cleaner than hydraulic systems.  However, 

for safety reasons, they must operate at a much lower 

pressure and therefore will have poorer dynamic response. 

3. Structural Rigidity. 

The structural members must have a minimum deformation 

under load so that the position of the hand may be 

accurately computed from the rotations in the Joints. 
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In aaHition the Joints must contain a minimum of play 

for the same reason. 

4. Range of Freedom 

It is desirable that each Joint of a manipulator possess 

a large range.  Even though a position might be reachable 

from a kinematic point of view, the physical limits on 

actuators will greatly reduce the range of these.  In 

fact, many of the problems encountered while using the 

obstacle avoidance programs were due to the very 

restricted range of motion on the electric arm 

(Figure 6.6). 

5. The Outline of the Manipulator. 

W« would like the manipulator to have a slim outline 

so that it could work in tight places.  In addition 

a smooth profile might be desirable so that it would 

be easily recognizable in a T.V. image. 

6. Other Factors. 
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Additional factors to be considered are:  precision, 

speed, cost controllability (i.e., the ability to 

follow a prescribed path), and safety. 

When choosing a manipulator we cannot hope to maximize all of these 

considerations. Many of these are Influenced by the type of task per- 

formed by the manipulator.  For example, if a goal for the hand-eye system 

Is to assemble a machine containing small electronic components, the 

manipulator must be capable of very delicate movement and position 

accuracy.  For tasks involving throwing or catching objects, the arm 
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n 
must be able to move rapidly, and be accurately controlled. Thus some 

applications require obvious tradeoffs (e.g., precision and speed), 

and in others certain considerations predominate. 

From experience with the two manipulators uaed  at the Stanford 

Artificial Intelligence Project we may make some comment on specific 

arms. The project presently aas two arms.  One is a modified electric 

prosthetic arm (Figure 6.6). The other is hydraulically powered 

(Figure 7.3). 

The d.c. electric motor driven arm has proven acceptable for 

stacking blocks. After some experimentation, a rate modulated pulse 

dc system seems to be an excellent way to control the arm. With position 

feedback via potentiometers, and an external pover supply, it is 

satisfactorily interfaced with the computer.  owever, it is somewhat 

lacking in the range of freedom and structural integrity - problems that 

could be overcome with a second generation arm of this type.  It is not 

particularly fast nor particularly precise.  The precision problem stems 

partly from the poor structure, and partly from the control problem 

caused by the inherent inertia in the motors.  It is expected that with 

refinement of the control scheme, the precision and controllability could 

be considerably improved. 

Although experience with the hydraulic arm Is limited at this time, 

it shows promise of great speed.  It also appears structurally sound, 

and has a wide range of freedom in its Joints.  It is somewhat massive 

due to its high speed and torque capabilities. At this time, the control 

problem using two-stage servo-valves appears soluble. The physical danger 

to personnel and equipment is obvious and this arm is housed in a room 
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Figure 7.3.    Hydraulic Am at Stanford Artificial Intelligence Project. 
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Isolated from the computer. This makes the interface with the computer 

T.V. system difficult, though soluble. la addition the forces involved 

require that the arm be  firmly anchored to the  floor. 

At present these manipulators are used for fairly simple tasks. 

As  the hand-eye program becomes more advanced the  tasks will become 

more involved.    At some future time,  then,  one might expect to be able 

to say more about choosing a manipulator for computer control in a more 

complex environment. 
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CHAPTER VIII 

CONCLUSIONS  AND SUGGESTIONS  FOR FUTURE WORK 

In this dissertation,   the  kinematic  problems associated with 

manipulators have been explored.     It Is hoped that  the classification 

scheme and catalog  of manipulators,  presented In Chapter II, will  lead 

to manipulators being compared on a scientific basis.    Manipulators whose 

exteriors seem much different,  are often klnematlcally equivalent.     Thus 

solutions  for one manipulator are applicable  to another. 

It Is seen that  the  problem of positioning a manipulator Is  directly 

related to the displacement analysis  of mechanisms.     The solutions 

presented for cases with three revolute axes  Intersecting at a point 

seem to be previously unknown.     These results  therefore represent a 

contribution to spatial  linkage analysis. 

It is felt that these solutions,  along with the extension to the 

special cases with only pairs  of axes  intersecting,  give insight into 

the kinematic analysis  problem for the most general six degree-of- 

freedom manipulator.     That  is,   for  the special case  of three  intersecting 

pairs  of axes,  four different configurations were  found  leading to the 

same hand position and orientation.    For  two pairs  of  intersecting axes, 

eight configurations were  found,  and for only one  pair  of axes inter- 

secting,  sixteen configurations were shown to be  possible.     In all of 

these special cases,  adjacent axes were  orthogonal,  and the adjacent 

common normals  intersected  one another.    Since no axes nor adjacent 

common normals  intersect  in the most general  problem,   it is almost 
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certain that  the general problem has even more  possible configurations 

leading to the same hand position and orientation. 

The possibility of  a very large number of configurations indicates 

that,  even if a   solution to the general  problem could be expressed as a 

single polynomial  in one unknown,   tuis  polynomial would be  of such a high 

degree that it would be  impossible to find all  the roots.    We conclude, 

then,  that  the complete solution to the most general problem is not at 

this time  technically feasible:     perhaps,  someone,  someday will solve  the 

problem.    Kinematicians have been trying  for  over 50 years. 

The  iterative  technique,  based on velocity, was  found to be superior 

to the Newton-Raphson method both in the amount  of time taken per iteration, 

and in the range  of distance between positions where convergence  occurred. 

The  iterative  technique may be used to good advantage when tbe distance 

between positions  is  small.    Thus an approximate model having a closed 

form solution could be used to find starting points  from which the 

numerical procedure  could be used to find actual solutions. 

The problem of  placing the end of a  digital manipulator at a target 

appears soluble.     The  results have shown that the hand can be  placed 

close to an arbitrary point.    Different strategies could be developed 

that might save computer time and improve performance.    Matching the 

arm to a curve,  as was  done  in the  planar model, would undoubtably help 

shape the arm.     However,  if this manipulator is  to be used,  its  in' 

herent drawbacks must be remedied.    That is,  the motion between states 

must be made  control lab It. 

The  trajectory generation and obstacle avoidance routines were 

found to perform a basic  function:     they allow a manipulator to work 

D 
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within a  space composed  of  large obstacles.     Previous attempts at 

obstacle avoidance dealt only with keeping  the hand away from obstacles. 

In this work,   possible  conflict between obstacles and all  links  of  the 

manipulator  is  considered.     Future work should attempt  to remedy the 

Vllowing shortcomings: 

1. The description of  obstacles needs  to be   improved.     In 

this work,   obstacle properties were defined using a data 

structure within the confines of FORTRAN.     Many useful 

properties,   such as the relation between obstacles were 

not stored.    With the development of a more sophisticated 

world model,  using a higher level programming language, 

the manipulator and obstacles could be modeled   more 

precisely.    This would lead to more accurate conflict 

detection and better information about which direction 

to move to get away from an obstacle. 

2. The problem of moving between two closely spaced obstacles 

has not been adequately solved. 

3. The computer  time to generate trajectories may be 
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excessive.     This  is   in part due  to  the attempt  to make 

the routines applicable to a variety of manipulators. 

For example,   the analysis program used to compute hand 

position and orientation is applicable  to the most 

general arm.     Fast machine  language subroutines to perform 

dot products would decrease machine  time. 
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4.  At present the routines do not benefit from past 

experience.  Improvement might result if previously 

generated trajectories were stored and parts of chem 

were used over again when similar situations arose. 

The problem of zones has not been fully explored. Although a 

mathematical interpretation of zones is presented, it is not totally 

c"'<-lsfactory as it Ho^r.r.dg upon the existence cf a solution.  Geometrii-al 

methods give insight into special cases, however they have the dis- 

advantage of not being generally applicable. 

In this work six degree-of-freedom manipulators were studied 

because it is necessary to have six degrees-of-freedom to grasp an 

object at an arbitrary position with an arbitrary orientation.  However, 

since manipulators with more than six freedoms have not been studied, 

future work might involve investigating the use of additional freedoms. 

For example, extra degrees-of-freedom would be useful in avoiding 

obstacles. 

It is felt that the theoretical results of this investigation, and 

the computer programs developed from them, yield a "universal" kinematic 

analysis and trajectory generator procedure.  It is expected that the 

package of computer programs (which will be further documented in a 

project memo) can be applied to any six degree-of-freedom manipulator 

with turning joints. 
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APPENDIX  I 

DETAILS OF SOLUTION BY NEWTON-RAPHSON METHOD 

The Inputs to the program are: 

NBM:  the maximum number of iterations 

THM:  the maximum allowable correction in radians 

XBM:  the maximum allowable change in target 

L.L-NjN«:  Two vectors fixed in the hand in their initial and 

final positions.  L is the direction the hand points 

(the direction of x-axis) and N is the direction 

of the sixth revolute axis.  The subscript  1 refers 

to initial,  2 to the final position . 

P, and P :  Vectors specifying the initial and final position 

respectively of a point in the hand. 

Theta: A 1x6 vector giving the initial joint angles (i.e., 

\  ,   1-(1,...,6) 

In addition the program uses the following subprograms: 

ARMCON:     Spscifies the parameters of the arm 

HANDPO:    Analysis program that computes  the position and 

orientation of all the  links  in the arm, using 

the present values of the Joint angles. 

MATINV:     Routine to invert matrices and solves the  linear 

equation    Ajc_a b  . 

The program basically solves the matrix equation  (4.5).    The    A^    are 
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found from the analysis program and the coefficients of the  6A  are 

generated by successive matrix multiplication. The matrix  Aeq  is 

obtained from the Inputs.  It Is of the form 

Aeq - (L2)   (M2)   (N2)   (P2) 

0 0 0 1 

,lla12a13a14 

a21a22a23a24 

a31a32a33a34 

(Al-1) 

0 0 0 1 

Since the rotation portion of the matr .x is composed of nine elements 

and only three are independent, we select the equations formed from 

elements a^j, ajj, and »^2    which together with a^^, a24, a^ 

give us six independent equations. 

Specification of Intermediate Goal 

If the changes in position and orientation represented by the 

right-hand side of equation (4.5) is too large, (4.5) is not valid 

and an intermediate goal is necessary.  The unit vector L and N 

respectively rotate trough angles defined by the arccosines of L'Lo 

and N^'No , about axes defined by h.ixh.j    an(* IiixIio •  For intermediate 

goals,  L  and N  are rotated through fractions of their total 

rotation.  In addition, the same fraction of Zo'—l    is a^^ed to    L-i   • 

A block diagram of this is presented. 
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30U2   O^Ml.Nl.Xl.Ml.NlJWH^DELTMM^NBM) 
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I   HA     I 

NORMAU7.E  DIRECTION   VECTORS 

COMPUTE CMAN&E IN ORIBNTAT \ON 
OF VBCTORS  M AND N    AND 
NORMALIZED  CMAJS&E   \N 
 P05\T IO N| 

, 3 . 
CHOOSE   MAX CHANGE,  DxNl| 

DEFINE   INTERMEDtATE GOAL 

BV  REDUCING   ROTATIONS 
AND   TRANS   BY  RATIO 
OF      DEL/JJX,^ 

GENERATE   CQEPFlClENTS  OF 
MATRIX    EQUAT\OMi> 

SOLVE   FOR CHANGES    IN 

1 H^N + I 

CHOOSE MAXIMUM ANGLE CHANGE 

RBOUCE     ANGLE   CHANGES 
BY RATIO lüü 

TXM 

ADD CHANGES TO PRESENT 
ANGLES. COMPUTE   MEW STATE 

STATt 2 «FINAL STATE 

Figure Al.l. 

EXiT Ug-^SCTFLAG |-».EXtT 

Block diagram of S0L2--solution using Newton-Raphson. 
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APPENDIX II 

DETAILS OF  ITERATIVE VELOCITY METHOD 

We first present s method for finding the screw given: 

L and M :  Two vectors fixed in the hand in its initial state. 

L2 and H-:    The same two vectors after a change in position and 

orientation. 

P, and P-:  Vectors from the origin of the 1 system to the same 

point in the hand before and after the change in 

position and orientation. 

The direction of the screw axis n and the magnitude of the rotation 

cp can be found from the following statemenc of Euler's theorem: 

cp  rLj-L^ x (Nj-N^ 
n tan w ■  

(1:2 "V ' ''-2+-l) 
(A2-1) 

if we define 

W a, 1     , 

Q^-ip * (li2+V 

rA2-2) 

then 
w 

n ■ — 

" lw| 

cp - 2 arctan |w| . 

The normal from the origin to the screw axis, £ 

x-+ PJ+PJ + W x  (P2'*i)   . W-(P2+P1)     W 
^2— " W V 

(A2-3) 

(A2.4) 

is computed frcm. 

(A2-5) 
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The magnitude  of  the   translation,   S,   is 

F. 

0 
E 

H = | (A2-7) | 

^ = MWparctf^   (IWl) , (A2-8) |j 

S  - W *   C2? -li) 
|W| (A2-6) 

Lastly,  defining the  pitch of the screw    H    as 

we have all the necessary parameters  of the  screw. 

We next show that  for  infinitesimal motion,     W    is related to the 

angular velocity.     We write 

D 

L, - L,  +ik At +^1 At2 + ... (A2-9) dt    T2 n 
N, -N,  +^1  At +£2l At2 + ... (A2-10) 
-2     -1        dt ^2 

/    d^ d^cp        2 
cp    '/.+  At+—;    At    + ... (A2-11) [\ 

/ l      dt dt^ 

using the above  in  (A2-2) 

Si ATx^L At +  ... 
w . Si OZ  Ä (A2-12) 
~      ^L    AT •   2N1 + ... U 

and in its equivalent  from (A2-1) 

W - tan  (| At +  ...   )n , (A2-13) 

Then equating the right-hand sides of (A2-13) and (A2-12)and taking 

the limit as At -♦ 0 we get 

dL,   dN 
-* x - 1 

Cp n - It It (A2-l/4) 
dL. .  N , 
St1 

which are equivalent  expressions  for the angular velocity of the hand. 
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If we define the approximate angular velocity,  u)    to be 

fll-Sfn {A2-15) 

o 

i 

and the rotation is small  so that from (A2-3)  we find n    and from (A2-4) 

Acp» 2 arctan  jw] (A2-16) 

Now the approximate velocity of a point  la tne hand at the origin is: 

V   - Hu) - m x r (A2-17) 

= H^Pn - Wn x r (A2-1Ö) 
At"      At 

I where    H,  Ace,  n,    and    r    *»re  the screw parameter^  formed  from the 

change in hand position and orientation. 

Inputs  to the program 

Tills program has  the  same inputs as  the Newton-Raphson program. 

In addition to the same subprograms,  it requires: 

SCREW which computes  the screw defined by    2.^2^1-2-1-2 

using equations  (A2-1)   -  (A2-7). 
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 ZEZ  

COMfUrm TM6   scnevg  FROM 
POStT\0»J    1   TQ 2  

TO  BE   INTSH^rtCD^TU-•" 

F>NO MKmMÜM   QF WDT»,T>Cm   QxMJ 

»P6C\PY    INTCRMi- 
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FlMD    MA*   CHANGE, TXM |N*-CNI-I| 
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CHANGE BV THM 

TXM 
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SAtCD ON TMSSr ANGLE CHANCES 

POSITION 2*- PINAL RXlTlON 
OP MANO 

POSITION |<_ PRESENT WOSITO 

Flgurf A2.1.     ilock diagram of SOLI 2   -  the  Iterative velocity method. 
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APPENDIX  III 

MATHEMATICAL DETAILS  FOR THE  ^TGITAL MANIPULATOR 

A3.1    Transformation to find hand position given the   angles (Planar 
Case) 

We use  the basic   link model described in Chapters  II and III. 

For  the planer case,  the z-coordinates and  the angles between adjacent 

links are all  zero.     In addition,  we assume  that all  the common normals 

are  the same  length,     d   ,   so that we may rewrite   (3.1)  as 

cBi     -aQi    dc9i 

aei      cfii    ds^ 

0 0       1 

(A3-1) 

and simiiiarly from (3.17)  we may describe  the position of  the hand 

(x,y)  by: 

!rj-Ai--v;_ (A3-2) 

where    n    is the number of  links  in the arm. 

A3.2    Transformation to Find Hand  Position Given the Angles  (3-Diroen- 
sional Case) 

Consider the   link element  shown in Figure A3.1.     The  link model 

(Chapter  II) and transformations  (Chapter  III)  arc applicable to 

igure  AJ   I.     The  Basic  Element   for a  Three-Dimensional   Digital Arm. 
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this manipulator. We note that each of the "joints" of Figure A3.1 

actually contains two degrees oi freedom.  Using (3.1) we may inrite 

the transformation due to a rotation about each axis, so that the 

transformation between adjacent elements may be written 

CeiCCPi 

s6i cq^ 

sqp. 

•sQi        -c9i s(pt d c^  ccp 

-8Qi scp1 d sBi c(p1 

0 

0 

ccp. d scp, 
(A3-3) 

-I 
and the cooidinates, of the end point of the last link, (x,y,z) are 

- Bi ••. • B (A3-4) 

where n is the number of elements in the arm. 

To find rotations about axes z  and z'  (Figure A3.1) which 

leed to a tilt of  9  about an axis midway between z. and zf , 

we note that this is equivalent to rotating zi through 43° about 

Xj    and then rotating x.   through  fl0 about the new z^ axis. 

Then using equation (3.1) to express these rotations, the resulting 

transformation matrix is 

c0o ■8eo 
0 dcfi0 

*e0 

7S 
ceo -1 

72 
daeo 

/2 

^ TT 
1 

72 
ds9ft 

V2 
0 0 0 1 

(A3-5) 

Then the direction of the x^+i axis is represented by a vector com- 

posed of the '11', '21', and '31' elements of (A3-5). These elements 
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must be equal to the corresponding elements of (A3-3) which lead to: 

scp =  se0 

and t9r 

tp TT 

A3.3 Derivation of Curve Composed of Segments of Four Circles 

We want to find a curve made up of segments of four circles 

connected In such a way that adjacent circles are tangent to one 

another. Thus a smooth transition between the elements of the curve 

exists.  In addition we require that the total arc length be specified. 

We also specify the slope of the curve at each end and the radii of 

the circles. Consider such a curve shown in Figure A3.2. Given uhe 

radii of the circles and the position of the base of the arm, we 

easily locate center A. 

Figure A3.2. Curve composed of segments of four circles. 
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The known angle that the tangent to the curve at the base makes with 
a 

the horizontal    -Sp    is one-half the allowable joint rotation.    The 

end point on the curve is specified by its coordinates  (x,y)t and the 

end slope by the angle    V.   .    This  then fixes   center    D  ,   from which 

the line segment    ÄT5 ,  and the angles   '.      and    n    are defined.    Next 

we must  locate  the centers    B    and    C  ,  and find the angles     9ii   P2» 

63, and    0,     which define each segment of the curve.    For the purpose 

of derivation,  we introduce the angle    9i    between line   ÄT5    and   ÄB . 

.    } 

and 

or 

2 

Next Impose the constraint that the total arc  length is    L 
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(A3-6) 

or 

(61 + 83) + (92 + 64) - 7 (A3-10) 
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If we denote the radii of the circles by r , then: 

"S = r 

AB = 1C » ED 

and define    R    such that 

R = ÄD      . (A3-7) 

Then from Figure A3-2 we observe 

+ iQ-a+fiJ (A3-8) [j 

q) -   fii -r ^ +  (* -  62)   "   ( n -  O3) + Or   -   84) 

Ü 
(61 + 83)  -   (62 + 64)   =  T - |2 - n (A3-9) 

Ü 
rCGi + 82 + 63 + e4)  = L 

Ü 
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Combining (A3-9) and (A3-10) by subtraction and addition yields 

L .       e, (A3-11) 

(A3-12) 
(92 + e4) = ^ (7 - ^ ■•■■I2 ■,',t)   • 

Writing  the  law of cosines tot    ABCD    yields 

^2 . 8r
2
(1 .  C08e3)     . (A3-13) 

Then writing the law of cosines for ABAD yields 

»       0     0 
ID    = 4r    + R    -4rR cose^ (A3-14) 

and we may easily eliminate    TTD2  from  (A3-13)  and  (A3-14)   to obtain 

COi flC - - I + -i   + 2^ cos  flo   • (A3-15) R      ^r        R u3 

Now we combine  (A3-8)  and  (A3-11)   to get 

0! + 83 = 3 

where L 60 
ß.'|(r-n+cp-2a+7fi) 

We next eliminate  Qj between (A3-15) and (A3-16), which after 

simplification results in 

kj cos2 9^ + k cos e^ + k3 - 0 

(A3-16) 

(A3-17) 

where 

4r r2 

w = 1 - r- cos R + b—r kl  1  R     P   R 

2(1 - — cos |) (f " 41 ) 
R R     n 

r   -  9   r2        2 
(I "AD ■ 4f2 (1 " cos •) 

(A3-18) 

(A3-19) 

(A3-20) 

(A3-21) 

from which  Q'  may be obtained.  Knowing  C^ we compute  0^ from 

(A3-8) which locates center B .  Once B is known, renter C  is 

found by considering the intersection of two circles of radius 2r , 
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one with center at B , the other at A .  Once the circle centers 

are located, the angles  89 i d« t BA  
can be easily found. 

A3.4  Description of Programs - 2-Dimensional Model 

First the arm is put into an initial con "iguration either in an 

arbitrary manner or with the subroutine INITIAL that matches the arm to 

the curve composed of circle segments. 

Recalling that the coordinate transformation exists: 

1 n+1 
X = A1 ... An   X 

generated for all possible    6.   »   1 = index ,   ...   ,  index + look .    The 

matrix multiplication is  performed  for each,  and     Öfn.jex    ^s  cho8en 

that  leads to minimum error.     Index is then incremented by    1    and the 

process repeated. 
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the multiplication of the transformation is broken into 3 parts 

(Al •.. Alndex ml)   (Aindex ....Aindex + look) (A^^ + ^^ + ^..A^ 

where "index" is the number of the Joint under consideration and "look'1 

is an integer giving the number of stages of look-ahead.  Then the 

first and third term are generated by a subroutine that transforms 

coordinates.  These are temporarily stored. Then the middle term is 

I: 
Description of INITIAL: 

This subroutine generates a curve composed of segments of four 

circles, and then generates points on this curve corresponding to 

joints of the arm.  The arm is then made to follow the curve by various 

techniques. 
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Techniques for curve matching. 

1) e  Is moved so as to put position of joint i+1 as close 

ri                     as possible to point 1+1 on the curve. 

2) position of joint  i+1 and slope of link i are made as 

close as possible to curve at corresponding point on curve. 

3> A procedure named "match-ahead" tries to match (i+l)£ll 

joint with (i+l+A)— point on curve (A is the number of 

joints of match-ahead) by moving  0 . 

The radius of the four circles can be made greater than or equal to 

the smallest radius that the arm can turn. 

] 
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A3.5 Description of Programs - Three-Dlmensional Model 

This program is simlliar to the two-dimensional case with the 

exception of changes to make it more efficient. 

After the starting configuration and amount of look-ahead are 

specified, three matrices are generated.  They are 

1) the identity matrix 

2) (B1       ...  B1+look) 

3) (B2+look  '••  V 

where "look" is the amount of look-ahead and B. is defined as in 

Equation A3-3. Call these M, .M .and M- 
1 • 2       3 ' 

Then    (M ) (M )(M )  is the total transformation matrix.  This 

look+1 
product is evaluated for the  8       different M matrices and the 

state at joint 1 chosen which minimizes the error. 
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Then    Mj,  M2,    and    M3    are re-defined 

Ml " Ml x Bi 

M3 " Nicole X M3 

: 

: 

o 
M2 "  (B2" 'B2+look> 

•nd ^ is chonen In a manner simlliar Co that of  9, .  me process I 

continues. 
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APPENDIX IV 

DETAILS OF CONFLICT DETECTION 

The jiethods presented here result directly from classical vector 

geometry. 

rt4. I   Objects as Spheres 

Note that the physical links of the manipulator are modtlud as 

cylinders.  We compute the distance from the line segment that is the 

axis of this cylinder to the center of the sphere.  The problem is then 

to find the distance between a point and a line segment.  Consider the 

line 

r = a + bt fA4-l) 

and the point P, described by the vector P as shown in Figure A4.1. 

I I MC 

*-/ 

Figure A4.1. Distance Between Point and Line. 

If a is a vector to the end of the line segment,  b a unit vector 

parallel to the line,  t.  the length of the line segment and 

0< t < t 

then £ is the locus of points on the line segment.  A vector,  d^ , from 
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the point to the line, normal to the line Is given by 

1 = ^ x [(•-£) xb] (A4-2) 
■ (a-£)-b •(£-£) b 

0 < t* < t. 

A4.2  Objects as Infinite Planes 

Here we find the distances between the end points of a line segment 

and a plane.  Consider the plane described by b , a unit vector normal 

to the plane and p , the distance of the plane from the origin measured 

in the b - direction.  If r describes a point, then a vector from 

the plane to the point, normal to the plane is given by, d  : 

d - (r-b - p)b (A4-5) 

A routine PLLINE performs the computations. 

A4.3  Objects as Cylinders 

The problem is to find the shortest distance between two line 

segments, which are the axes of the cylinders.  Consider line 1 and 
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To see if this normal cuts the segment of interest, we note fron 

Figure A4.1 and equation (A4-1) 

r = a + bt* « £ + d (A4-3) 

where t* is the value of t where the normal intersects the line, 

then from (A4-3) 

t* = b • [d - (a-£)] (A4-4) 

Then if r. 
the normal intersects the segment.  If this is not the case, we find 

the distance between P and the end points of the line segment and 

choose the minimum.  A routine called PTLINE performs these calculations.. r 
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line 2 given by: 

(A4-6) 

(A4-7) 

as shown in Figure A4.2, 

If respectively: a , a* are vectors to the end of the line 

segments, b^ , bo unit vectors parallel to the lines, t^Q , t2Q 

the length of the line segments and 

0 ^ ti ^ ho 

0 ^ ^-2 ^ '20 

then    r,   ,  r^    are  the  loci of ooints on the  line  segments,     A vector, 

d   ,   from line  2  to  line  I, 

Figure A4,2.   Distance  Between Two Lines, 

normal  to both  is  given by 

d =  (^-a,,)   (j^xbp 

l-(b1.b2)2 
(A4-8) 

Now to find where the normal cuts the lines we find where line 2 

pierces the plane containing line 1 and d .  The locus of points, r_ , 

in this plane may be written 

(I - £i) ' [^x^xb^] = 0 (A4-9) 
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where -     and p are as in (A4-10).  Now the corresponding point on 

line 1 Is found from: 

then ve check the distance between endpolnts ol on«? line segment to 

the other line segment and vice versa with the methods of A4.1.  A 

routine LNLINE performs these computations.  It uses PTLINE if necessary. 
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D This Is of the form: 

r • n - p = 0 , (A4--10) 

where n and p may be found from (A4-9).  Then line 2 pierces this 

plane at the point  P2 ,  defined by the vector £2 : 

■>  B a  a. bo(p-ao * n) 
2.2 - ±2 +  -2  -2 =- (A4-11) D 

!: 

£l = £2 + d  . (A4-12) 

We next determine If £.  and £  He on the segments of Interest 

In a nanner similar to that used In A4.1.  If this Is not the case 
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APPENDIX V 

SOLUTION  OF A      6R,a a a a        MANIPULATOR AS  FOUR QUADRATICS 

In section 3.3.8 we  showed how the  solution of a öRja^a^ 

manipulator could be reduced  to a single  polynomial  of degree eight. 

We now present  the  details  of how a    6R,a.a?a.a    manipulator  (with 

adjacent axes  orthogonal)  can be expressed as  four quadratic equations 

In four unknowns.    As  In section 3.3,8, we w Ite equations for  the 

coordinate  (x,  y,   z)   of the  point of Intersection of axes 3 and 4 

(see Figure 3.10). 

To Include    a_  ^ 0   ,  we use equation  (3.100)  with    a    ^ 0   .   a     ^ 0 

a4 * "9o0 « a5 = 9o0  »  s2 = S3 = S4 s    = 0   ,   to obtain: 

-a4 c95 cfi6 -a5 c96 

a4 C% 8Q6 ""Vöe 

■a4 S95 

Similarly  (3.104),  and   (3.111)  become respectively: 

(A5-1) 

7P2
S 

2 2 
a4 + a5 + 2a4 a5  ^s 

and 

29 9?"l9or 
Q    + R    -  22  •  R  -(a4 + a5)      -^a2    a13x + a23y + a^z + a 

Then from the  components  of     'P    In (A5-1)  we  find: 
7 

-1 

14 

7 
Ve5 

+a5 

*%' 

S9   s- 

a4ce5+a5 

7, 

(A5-2) 

9       2  2 
2=4a4a5 

"(A5-3) 

(A5-4) 

(A5-5) 

(A5-6) 
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and from (3.104) 

1112 
ce5 = L  "a4"a5 

2a4a5 

(A5-7) 

Then equation (3.122) may be written with  065, 865, se^ , and ce6 

from (A5-4) - (A5-7) which results in: 

7r 
L^J = 2a4(a4cö5+a5) 

,  7     7 
-J    x    z 

9  7     7 
-2   y   z 

,  7 2 .   7n2  ,     2 2 -2   z   +    P    + a.   -  a. 
— 4 5 

(A5-8) 

To express   tu4    in  system 1 we use   (3.132)   and  (A5-8)   to obtain: 

7 7 7 7 7222 ■2   z (ajj x+a12 y+a13  z)+a13(  P +a4-a5) 

^4" 2a4(a4ce5+a5i 

7   /       7  J       7   ,       7  .^       ,7.2,   2    2, 
•2   1 (a21 x+a22 y+a23 z)+a23(  P +a4-a5) 

7 7 7 7 7222 
•2   z (a,.  x+a,9 y+a,-, z)+a    ( P +aA-a ^ 

*31 '32 J,,,,33 

0 

33' 4 "5 

7 2 7 
Making use of (3.109) for  P   and (3.110) for  x 

(A5-9) 

and 

(A5-9) becomes after simplification: 

^4 za4(a4ce5+a5) 

-1, -2(x-x4)(a13x+a23y+a33z+a34)      \ 

\+a13(W+R2-2xx4-2yy4-2zz4+aJ-a5)y 

L1{y-yO (ai3X+a23y+a33Z+a34) 

2 2 l-a23(W+R -2xx4-2yy4-2zz4+a4-a5)y 

/-2(z-z  )(a    x+a    y+a    z+a"1) 
4      13       23'     33       34 

2 2    2, 
a33(W+R -2xx4-2yy4-2zz4+a4-a5)/ 

\ 

(A5-10) 

where  the dot  product  in  (3.109)  has  been evaluated,     R    has  been expres- 

2 2 2 sed in terms of  its  components     (x4  ,   y4  ,   z4)   ,  and  (x    + y    + z  )     has 
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been replaced by the new variable W  (equation (3.141). We now may 

form (3.112) with a.^  = 900. We use (3.129) for cUj and (A5-10) for 

0). , and obtain after dividing by common factors and simplifying: 

-1    r  2    2    2    2     2'1 
nO - 2z(a13X+a23y+a33Z+a34) \-& -a4+a5-a2+a1J 

2    2 r 2 2    2 
+(W+a2-a1)l a33(W+R -2xx4-2yy4-2zz4+a4-a5) 

-I "I (A5-11) 
n+2z4(a13x+a23y+a33z+a34^J 

-12 2    2 
+2za34(W+R^-2xX4-2yy4-2zz4+a4-a5) 

:: 

D 
[w+R2-(2xx4+2yy4+2zz4)-(aj+a^)] 

9 1- _i 0  rn 

Thrn writing (A5-3) with 2 &n^    £ expressed in terms of their compon- 

ents  (x, y, z)  and  (x, , y, , z,)  respectively, along with the 

definition (3.141), yields: 

2 r -12 2-1 (A5-12) 2 r -1 2 21 
+Aa5 (a13X-t-a23y+a33Z+a14) -«^J- 0 

Similarly (3.138) becomes after introducing W  from (3.141): 

(W-a2-a2)2+4a2(z2-a2) - 0 . (A5-13) 

The equations (A5-11), (A5-12), (A-13), and (3.141) are the four 

quadratics in the unknowns x, y, z,  and W . 
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